Skip to main content

Abstract

We review some aspects of the isotope effect (IE) in superconductors. Our focus is on the influence of factors not related to the pairing mechanism. After summarizing the main results obtained for conventional superconductors, we review the effect of magnetic impurities, the proximity effect and non-adiabaticity on the value of the isotope coefficient (IC). We discuss the isotope effect of T c and of the penetration depth δ. The theory is applied to conventional and high-T c superconductors. Experimental results obtained for YBa2Cu3O7-δ related materials (Zn and Pr-substituted as well as oxygen-depleted systems) and for La2-x Sr x Cu04 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Fröhlich, Phys. Rev. 79, 845 (1950).

    Article  ADS  MATH  Google Scholar 

  2. E. Maxwell, Phys. Rev. 78, 477 (1950)

    Article  ADS  Google Scholar 

  3. C.A. Reynolds, B. Serin, and L.B. Nes-bitt, Phys. Rev. 84, 691 (1951)

    Article  ADS  Google Scholar 

  4. J.L. Olsen, Cryogenics 2, 356 (1963)

    Article  Google Scholar 

  5. B.T. Matthias, T.H. Geballe, E. Corenzwit, and G.W. Hull Jr., Phys. Rev. 128, 588 (1962)

    Article  ADS  Google Scholar 

  6. R.A. Hein, and J.W. Gibson Phys. Rev. 131, 1105 (1963)

    Article  ADS  Google Scholar 

  7. E. Bucher, J. Müller, J.L. Olsen, and C. Palmy Phys. Lett. 15, 303 (1965)

    Article  Google Scholar 

  8. V.Z. Kresin, and S.A. Wolf, Phys. Rev. B49, 3652 (1994); and in Anharmonic Properties of High-Tc Cuprates, p. 18, D. Mihailovic, G. Ruani, E. Kaldis, K.A. Müller, Eds., World Scientific (1995).

    ADS  Google Scholar 

  9. V.Z. Kresin, A. Bill, S.A. Wolf, and Yu.N. Ovchinnikov, Phys. Rev. B 56, 107 (1997)

    Article  ADS  Google Scholar 

  10. J. Supercond. 10, 267 (1997).

    Google Scholar 

  11. A. Bill, V.Z. Kresin, and S.A. Wolf, Z. Phys. Chem. 201, 271 (1997); Z. Phys. B, in press.

    Article  Google Scholar 

  12. A. Bill, V.Z. Kresin, and S.A. Wolf, preprint.

    Google Scholar 

  13. V.Z. Kresin, and S.A. Wolf, Phil. Mag. B 76, 241 (1997).

    Article  ADS  Google Scholar 

  14. J.P. Franck, Physica Scripta T66, 220 (1996)

    Article  ADS  Google Scholar 

  15. J.P. Franck, S. Harker, and J.H. Brewer, Phys. Rev. Lett. 71, 283 (1993)

    Article  ADS  Google Scholar 

  16. J.P. Franck, and D.D. Lawrie, Physica C 235-240, 1503 (1994)

    Article  ADS  Google Scholar 

  17. J. Supercond. 8, 591 (1995); J. Low Temp. Phys. 105, 801 (1996).

    Google Scholar 

  18. G.M. Zhao, V. Kirtikar, K.K. Singh, A.P.B. Sinha, and D.E. Morris, Phys. Rev. B 54, 14956 (1996).

    Article  ADS  Google Scholar 

  19. G. Gladstone, M.A. Jensen, and J.R. Schrieffer, Superconductivity in transition metals, in: Superconductivity, R.D. Parks, ed., Marcel Dekker, New York (1967).

    Google Scholar 

  20. E.A. Lynton. Superconductivity, Methuen, London (1969).

    Google Scholar 

  21. R.D. Fowler, J.D.G. Lindsay, R.W. White, H.H. Hill, and B.T. Matthias, Phys. Rev. Lett. 19, 892 (1967).

    Article  ADS  Google Scholar 

  22. N. Bogolyubov, N. Tolmachev, and D. Shirkov. A New Method in the Theory of Superconductivity, Cons. Bureau, New-York (1959).

    Google Scholar 

  23. I.M. Khalatnikov, and A.A. Abrikosov, Adv. in Physics 8, 45 (1959).

    Article  ADS  Google Scholar 

  24. J.C. Swihart, Phys. Rev. 116, 45 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  25. IBM J. Res. Develop. 6, 14 (1962).

    Google Scholar 

  26. P. Morel and P.W. Anderson, Phys. Rev. 125, 1263 (1962).

    Article  ADS  Google Scholar 

  27. W.L. McMillan, Phys. Rev. 167, 331 (1968); 174, 537 (1968).

    Article  ADS  Google Scholar 

  28. V.Z. Kresin, Phys. Lett. A 122, 434 (1987).

    Article  ADS  Google Scholar 

  29. J.W. Garland, Phys. Rev. Lett. 11, 114 (1963).

    Article  ADS  Google Scholar 

  30. R. Meservey, and B.B. Schwartz, in Ref. [10].

    Google Scholar 

  31. E. Schachinger, M.G. Greeson, and J.P. Carbotte, Phys. Rev. B 42, 406 (1990)

    Article  ADS  Google Scholar 

  32. J.P. Carbotte, and E.J. Nicol Physica C 185-189, 162 (1991).

    Article  ADS  Google Scholar 

  33. J. Labbé, and J. Bok, Europhys. Lett. 3 1225 (1987).

    Article  ADS  Google Scholar 

  34. A.A. Abrikosov, Physica C 233 (1994) 102.

    Article  ADS  Google Scholar 

  35. T. Hocquet, J.-P. Jardin, P. Germain, and J. Labbé, Phys. Rev. B 52 (1995) 10330.

    Article  ADS  Google Scholar 

  36. T. Dahm, D. Manske, D. Fay, and T. Tewordt, Phys. Rev. B 54, 12006 (1996).

    Article  ADS  Google Scholar 

  37. V.H. Crespi, and M.L. Cohen, Phys. Rev. B 48, 398 (1993).

    Article  ADS  Google Scholar 

  38. A.A. Maradudin, E.W. Montroll, G.H. Weiss, and I.P. Ipatova. Theory of Lattice Dynamics in the Harmonic Approximation, Acad. Press, New York (1971).

    Google Scholar 

  39. V.Z. Kresin, H. Morawitz, and S.A. Wolf. Mechanisms of Conventional and High-T c Materials, Oxford Univ. Press, New York (1993).

    Google Scholar 

  40. D. Rainer, and F.J. Culetto, Phys. Rev. B 19, 2540 (1979)

    Article  ADS  Google Scholar 

  41. F.J. Culetto, and F. Pobell, Phys. Rev. Lett. 40, 1104 (1978).

    Article  ADS  Google Scholar 

  42. P. Auban-Senzier, C. Bourbonnais, D. Jerome, C. Lenoir, and P. Batail, Synthetic Metals 55-57, 2542 (1993)

    Article  Google Scholar 

  43. J.C.R. Faulhaber, D.Y.K. Ko, and P.R. Briddon, Synthetic Metals 60, 227 (1993).

    Article  Google Scholar 

  44. B. Ashauer, W. Lee, D. Rainer, and J. Rammer, Physica B 148, 243 (1987).

    Article  Google Scholar 

  45. T.W. Barbee III, M.L. Cohen, L.C. Bourne, and A. Zettl, J Phys. C 21, 5977 (1988).

    Article  ADS  Google Scholar 

  46. B. Stritzker, and W. Buckel, Z. Phys. 257, 1 (1972)

    Article  ADS  Google Scholar 

  47. T. Stoskiewicz, Phys. Status Solidi A 11, K123 (1972).

    Article  ADS  Google Scholar 

  48. B.N. Ganguly, Z. Phys. 265, 433 (1973)

    Article  ADS  Google Scholar 

  49. Z. Phys. B 22, 127 (1975)

    Google Scholar 

  50. B.M. Klein, E.N. Economou, and D.A. Papaconstantopoulos Phys. Rev. Lett. 39, 574 (1977)

    Article  ADS  Google Scholar 

  51. D.A. Papaconstantopoulos, B.M. Klein, E.N. Economou, and L.L. Boyer Phys. Rev. 17, 141 (1978)

    ADS  Google Scholar 

  52. R.J. Miller, and C.B. Satterthwaite Phys. Rev. Lett. 34, 144 (1975)

    Article  ADS  Google Scholar 

  53. B.M. Klein, and R.E. Cohen Phys. Rev. B 45, 12405 (1992)

    Article  ADS  Google Scholar 

  54. M. Yussouff, B.K. Rao, and P. Jena Solid State Comm. 94, 549 (1995).

    Article  ADS  Google Scholar 

  55. S.L. Drechsler, and N.M. Plakida Phys. Stat Sol. 144, K113 (1987)

    Article  ADS  Google Scholar 

  56. T. Galbaatar, S.L. Drechsler, N.M. Plakida, and G.M. Vujiçi’c, Physica C 176, 496 (1991).

    Article  ADS  Google Scholar 

  57. K.A. Müller, Z. Phys. B 80, 193 (1990).

    Article  ADS  Google Scholar 

  58. M. Cyrot et al., Phys. Rev. Lett. 72, 1388 (1994)

    Article  ADS  Google Scholar 

  59. D.S. Fisher, A.J. Millis, B. Shraiman, and R.N. Bhatt, Phys. Rev. Lett. 61, 482 (1988).

    Article  ADS  Google Scholar 

  60. L. Jansen, private communication. We thank Prof. Jansen for drawing our attention to this effect.

    Google Scholar 

  61. T. Nakajima, T. Fukamachi, O. Terasaki, and S. Hosoya, J. Low Temp. Phys. 27, 245 (1977).

    Article  ADS  Google Scholar 

  62. N.W. Ashcroft, and M. Cyrot, Europhys. Lett 23, 605 (1993)

    Article  ADS  Google Scholar 

  63. Yu.N. Garstein, A.A. Zakhidov, and E.M. Conwell, Phys. Rev. B 49, 13299 (1994)

    Article  ADS  Google Scholar 

  64. A.P. Ramirez et al., Phys. Rev. Lett. 68, 1058 (1992)

    Article  ADS  Google Scholar 

  65. T.W. Ebbsen et al., Nature 355, 620 (1992)

    Article  ADS  Google Scholar 

  66. P. Auban-Senzier et al., Synthetic Metals 55-57, 3027 (1993).

    Article  Google Scholar 

  67. W.A. Little, Phys. Rev. 134, A1416 (1964)

    Article  ADS  Google Scholar 

  68. V. Ginzburg, Sov. Phys.-JETP 20, 1549 (1965)

    Google Scholar 

  69. B. Geilikman, Sov. Phys.-JETP 48, 1194 (1965).

    Google Scholar 

  70. H.-B. Schlütter, and C.-H. Pao, Phys. Rev. Lett. 75, 4504 (1995)

    Article  ADS  Google Scholar 

  71. J. Supercond. 8, 633 (1995).

    Google Scholar 

  72. V.Z. Kresin, and H. Morawitz, Solid State Comm. 74, 1203 (1990).

    Article  ADS  Google Scholar 

  73. V.Z. Kresin, and H. Morawitz, Phys. Rev. B 37, 7854 (1988)

    Article  ADS  Google Scholar 

  74. B.T. Geilikman, V.Z. Kresin, and N.F. Masharov, J. Low Temp. Phys. 18, 241 (1975).

    Article  ADS  Google Scholar 

  75. S.A. Wolf, and V.Z. Kresin, in Ref. [3]b, p. 232.

    Google Scholar 

  76. S. Banerjee, A.N. Das, and D.K. Ray, Phys. Lett. A 214, 89 (1996)

    Article  ADS  Google Scholar 

  77. J. Phys. C 8, 11131 (1996)

    Google Scholar 

  78. S. Sil, and A.N. Das, J. Phys. C 9, 3889 (1997).

    Google Scholar 

  79. F. Marsiglio, R. Akis, and J.P. Carbotte, Solid State Comm. 64, 905 (1987)

    Article  ADS  Google Scholar 

  80. A. Abrikosov, and L. Gork’ov, Sov. Phys. JETP 12, 1243 (1961).

    Google Scholar 

  81. S. Skalski, O. Betbeder-Matibet, and P.R. Weiss, Phys. Rev. 136, 1500 (1963).

    Article  ADS  Google Scholar 

  82. J. Carbotte et al. Phys. Rev. Lett. 66 (1991) 1789.

    Article  ADS  Google Scholar 

  83. S.P. Singh et al., J. Supercond. 9, 269 (1996)

    Article  ADS  Google Scholar 

  84. K. Hanzawa, J. Phys. Soc. Japan 63, 2494 (1994)

    Article  ADS  Google Scholar 

  85. S.P. Singh et al, J. Supercond. 9, 269 (1996).

    Article  ADS  Google Scholar 

  86. S. Zagoulev et al. Phys. Rev. B 52, 10474 (1995); Physica C 259, 271 (1996).

    Article  ADS  Google Scholar 

  87. C. Panagopoulos, J.R. Cooper, N. Athanassopoulou, and J. Chrosch, Phys. Rev. B 54 (1996) 12721.

    Article  ADS  Google Scholar 

  88. R.B. Schwarz, P.J. Yvon, and D. Coffey, in Studies of High Temperature Superconductors, vol. 9, Narlikar, ed., Nova Science Publ., New York (1992)

    Google Scholar 

  89. M.K. Crawford, M.N. Kunchur, W.E. Farneth, M. McCarron III, and S.J. Poon, Phys. Rev. B 41, 282 (1990)

    Article  ADS  Google Scholar 

  90. B. Batlogg et al., Phys. Rev. Lett. 59, 912 (1987)

    Article  ADS  Google Scholar 

  91. T.A. Faltens et al., Phys. Rev. Lett. 59, 915 (1987).

    Article  ADS  Google Scholar 

  92. G. Soerensen, and S. Gygax, Phys. Rev. B 51, 11848 (1995).

    Article  ADS  Google Scholar 

  93. D. Zech, K. Conder, H. Keller, E. Kaldis, and K.A. Müller, Physica B 219&220, 136 (1996).

    Article  Google Scholar 

  94. V. Kresin, Phys. Rev. B 25, 157 (1982).

    Article  ADS  Google Scholar 

  95. V. Kresin, Phys. Rev. B 32, 145 (1985).

    Article  ADS  Google Scholar 

  96. J. Clarke, Proc.R. Soc. London, Ser. A 308, 447 (1969).

    Article  ADS  Google Scholar 

  97. L. Salem. The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York (1966).

    Google Scholar 

  98. R.P. Sharma, T. Venkatesan, Z.H. Zhang, J.R. Liu, Phys. Rev. Lett. 77, 4624 (1997).

    Article  ADS  Google Scholar 

  99. J. Mustre de Leon et al., Phys. Rev. Lett. 64, 2575 (1990)

    Article  Google Scholar 

  100. L. Gasparov et al., J. Supercond. 8, 27 (1995)

    Article  ADS  Google Scholar 

  101. G. Ruani et al., Solid State Comm. 96, 653 (1995)

    Article  ADS  Google Scholar 

  102. A. Jesowski et al., Phys. Rev. B 52, 7030 (1995).

    Article  ADS  Google Scholar 

  103. D. Haskel, E.A. Stern, D.G. Hinks, A.W. Mitchell, and J.D. Jorgensen, Phys. Rev. B 56 (1997) 521.

    Article  ADS  Google Scholar 

  104. R.P. Sharma, G.C. Xiang, C. Ramesh, R.L. Greene, and T. Venkatesan, Phys. Rev. B 54, 10014 (1996).

    Article  ADS  Google Scholar 

  105. G. Jonker, and J. van Santen, Physica 16, 337 (1950).

    Article  ADS  Google Scholar 

  106. G.M. Zhao, K. Conder, H. Keller, and K.A. Müller, Nature 381, 676 (1996).

    Article  ADS  Google Scholar 

  107. V.Z. Kresin, this volume.

    Google Scholar 

  108. T. Schneider, and H. Keller, Phys. Rev. Lett. 69, 3374 (1993); Int. Journ. Mod. Phys. B 8, 487 (1993).

    Article  ADS  Google Scholar 

  109. T.F. O’Malley, Phys. Rev. 162 (1967) 98

    Article  ADS  Google Scholar 

  110. Adv. Atomic Molec. Phys. 7, 223 (1971).

    Google Scholar 

  111. J.P. Franck, J. Jung, M.A-K. Mohamed, S. Gygax, and G.I. Sproule, Phys. Rev. B 44, 5318 (1991)

    Article  ADS  Google Scholar 

  112. High-Tc Superconductivity, Physical Properties, Microscopic Theory and Mechanisms, J. Ashkenazi et al. eds. (Plenum Press, New-York, 1991), p. 411.

    Google Scholar 

  113. H.J. Bornemann and D.E. Morris, Phys. Rev. B 44, 5322 (1991).

    Article  ADS  Google Scholar 

  114. G.-M. Zhao and D.E. Morris, Phys. Rev. B 51, 16487 (1995)

    Article  ADS  Google Scholar 

  115. G.-M. Zhao, K.K. Singh, A.P.B. Sinha, and D.E. Morris, Phys. Rev. B 52, 6840 (1995)

    Article  ADS  Google Scholar 

  116. G.-M. Zhao, M.B. Hunt, H. Keller, and K.A. Müller, Nature 385, 236 (1997).

    Article  ADS  Google Scholar 

  117. M.B. Maple, C.C. Almasan, C.L. Seaman, S.H. Han, J. Supercond. 7, 97 (1994).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bill, A., Kresin, V.Z., Wolf, S.A. (1998). The Isotope Effect in Superconductors. In: Kresin, V.Z. (eds) Pair Correlations in Many-Fermion Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1555-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1555-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1557-3

  • Online ISBN: 978-1-4899-1555-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics