Skip to main content

Recovery of Compactly Supported Spherically Symmetric Potentials from the Phase Shift of the S-Wave

  • Chapter
Spectral and Scattering Theory
  • 386 Accesses

Abstract

It is proved that the phase shift δ0(k) known for all k > 0, determines a real-valued locally integrable spherically symmetric potential q(x), |q(x)| ≤ C exp(-c|x), γ>1, where γ is a fixed number, c and C are positive constants. A procedure for finding the unknown potential from the above phase shift is proposed, an iterative process for finding the potential from the above data is described and its convergence is proved.

The author thanks R. Airapetyan for helpful discussions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Aktosun, “Bound states and inverse scattering for the Schrödinger equation in one dimension,” J. Math. Phys, 35, No. 12, 6231–6236 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Gakhov, Boundary Value Problems, Pergamon, New York (1966).

    MATH  Google Scholar 

  3. F. Gesztesy and B. Simon, “Inverse spectral analysis with partial information on the potential I.” Helv. Phys. Acta, 70, 66–71 (1997).

    MathSciNet  MATH  Google Scholar 

  4. B. Grebert and R. Weder, “Reconstructon of a potential on the line which is a priori known on the half-line,” SIAM J. Appl. Math, 55, No. N1, 242–254 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Klibanov and P. Sacks, “Use of partial knowledge of the potential in the phase problem of inverse scattering,” J. Comput. Phys, 112, 273–281 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Klibanov and P. Sacks, “Phaseless inverse scattering and the phase problem in optics,” J. Math. Phys., 33, 3813–3821 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Marchenko, Sturm—Liouville Operators and Applications, Birkhäuser, Basel (1986).

    MATH  Google Scholar 

  8. S. Mikhlin, ed., Linear Equations of Mathematical Physics (in Russian), Nauka, Moscow (1964).

    Google Scholar 

  9. R. Newton, “Remarks on scattering theory,” Phys. Rev., 101, 1588–1596 (1956).

    Article  MathSciNet  Google Scholar 

  10. A. G. Ramm, Multidimensional Inverse Scattering Problems, Longman, New York (1992) [Expanded Russian edition MIR, Moscow (1994)].

    MATH  Google Scholar 

  11. A. G. Ramm, “Recovery of the potential from fixed energy scattering data,” Inverse Problems, 4, 877–886 (1988); 5, 255 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. G. Ramm, “Conditions under which the scattering matrix is analytic,” Sov. Physics Doklady, 157, 1073–1075 (1964).

    Google Scholar 

  13. A. G. Ramm, “Inverse scattering on half-line,” J. Math. Anal. App., 133, No. 2, 543–572 (1988).

    Article  MATH  Google Scholar 

  14. A. G. Ramm, Scattering by Obstacles, D. Reidel, Dordrecht, 1–442 (1986).

    Book  MATH  Google Scholar 

  15. A. G. Ramm, “Theoretical and practical aspects of singularity and eigenmode expansion methods,” IEEE A-P, 28, No. N6, 897–901 (1980).

    MATH  Google Scholar 

  16. A. G. Ramm, “Extraction of resonances from transient fields,” IEEE A-P Trans., 33, 223–226 (1985).

    Article  Google Scholar 

  17. A. G. Ramm, “Calculation of resonances and their extraction from transient fields,” J. Math. Phys., 26, No. 5, 1012–1020 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. G. Ramm, “On the singularity and eigenmode expansion methods,” Electromagnetics, 1, No. N4, 385–394 (1981).

    Article  Google Scholar 

  19. A. G. Ramm, “Mathematical foundations of the singularity and eigenmode expansion methods,” J. Math. Anal. Appl., 86, 562–591 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. G. Ramm and P. Stefanov, “Fixed-energy inverse scattering for non-compactly supported potentials,” Math. Comp. Modelling, 18, No. N1, 57–64 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Rundell and P. Sacks, “On the determination of potentials without bound state data,” Jour. of Comp. and Appl. Math., 55, 325–347 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  22. W. Rundell and P. Sacks, “Reconstruction techniques for classical Sturm—Liouville problems,” Math. Comp., 58, 1161–183 (1992).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramm, A.G. (1998). Recovery of Compactly Supported Spherically Symmetric Potentials from the Phase Shift of the S-Wave. In: Ramm, A.G. (eds) Spectral and Scattering Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1552-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1552-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1554-2

  • Online ISBN: 978-1-4899-1552-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics