Skip to main content

Scattering by Obstacles in Acoustic Waveguides

  • Chapter
Book cover Spectral and Scattering Theory

Abstract

We study the scattering of acoustic waves by an obstacle embedded in a uniform waveguide with planar boundaries, which is a fundamental model in shallow ocean acoustics. Under certain geometric assumptions on the shape of the obstacle, we prove a Rellich-type uniqueness theorem in the case of soft obstacles. The solvability of the scattering problem is proved via boundary integral equations and the limiting absorption principle is established. An eigenfunction expansion in terms of the scattering solutions reveals the appropriate (partial) scattering amplitudes for the waveguide. We show that these scattering amplitudes for the propagating modes, at a fixed frequency, define uniquely the shape of a soft obstacle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. S. Ahluwalia and J. B. Keller, Exact and asymptotic representation of the sound field in a stratified ocean, in Wave Propagation and Underwater Acoustics, eds. J. B. Keller and J. S. Papadakis, Springer-Verlag, pp (1977), 14-85.

    Google Scholar 

  2. M. Callan, C. M. Linton and D. V. Evans, Trapped modes in two-dimensional waveguides, J. Fluid Mech. 229 51–64 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  3. D. V. Evans, M. Levitin, D. Vassiliev, Existence theorems for trapped modes, J. Fluid Mech. 261 21–31 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  4. D. V. Evans, C. M. Linton and F. Ursell, Trapped mode frequencies embedded in the continuous spectrum, Q. J. Mech. appl. Math. 46(2) 253–274 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. I. Goldstein, Eigenfunction expansion associated with the Laplacian for certain domains with infinite boundaries I, Trans. Amer. Math. Soc. 135 1–31 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. P. Gilbert and Y. Xu, Starting fields and far fields in ocean acoustics, Wave Motion 11 507–54 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  7. R. P. Gilbert and Y. Xu, Dense sets and the projection theorem for acoustic waves in a homogeneous finite depth ocean, Math. Meth. in the Appl. Sci. 12 67–76 (1989).

    Google Scholar 

  8. R. P. Gilbert and Y. Xu, The propagation problem and far-field patterns in a stratified finite-depth ocean, Math. Meth. in the Appl. Sci. 12 199–208 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  9. K. Morgenröther and P. Werner, Resonances and standing waves, Math. Meth. in the Appl. Sci. 9 105–126 (1987).

    Article  MATH  Google Scholar 

  10. K. Morgenröther and P. Werner, On the principles of limiting absorption and limiting amplitude for a class of locally perturbed waveguides. Part 1: Time-independent theory, Math. Meth. in the Appl. Sci. 10 125–144 (1988).

    Article  MATH  Google Scholar 

  11. A. G. Ramm, Scattering by obstacles (Reidel, 1986).

    Google Scholar 

  12. A. G. Ramm, Multidimensional inverse scattering: solved and unsolved problems, Proc. Intern. Confi on Dynamical Syst. and Applic, eds. G. Ladde and M. Sabandham (Atlanta, Georgia, 1994), pp.287-296.

    Google Scholar 

  13. A. G. Ramm, Scattering amplitude as a function of the obstacle, Appl. Math. Lett. 6 (5) 85–87 (1993).

    Article  MATH  Google Scholar 

  14. A. G. Ramm, New method for proving uniqueness theorems for obstacle inverse scattering problem, Appl. Math. Lett. 6 (6) 89–92 (1993).

    Article  MATH  Google Scholar 

  15. A. G. Ramm, The scattering problem analyzed by means of an integral equation of the first kind, J. Math. Anal Appl. 201 324–327 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. G. Ramm and A. Ruiz, Existence and uniqueness of scattering solutions in non-smooth domains, J. Math. Anal Appl. 201 329–338 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  17. A. G. Ramm, Investigation of the scattering problem in some domains with infinite boundaries, I, II, Vestnik (1963) 45-66, 67-767 (19).

    Google Scholar 

  18. A. G. Ramm, Uniqueness theorems for inverse obstacle scattering problems in Lipschitz domains, Applic. Analysis 59 377–383 (1995).

    Article  MATH  Google Scholar 

  19. A. G. Ramm, Continuous dependence of the scattering amplitude on the surface of an obstacle, Math. Methods in the Appl. Sci. 18 121–126 (1995).

    Article  MATH  Google Scholar 

  20. A. G. Ramm, Stability of the solution to inverse obstacle scattering problem, J. Inverse and Ill-Posed Problems 2(3) 269–275 (1994).

    MathSciNet  MATH  Google Scholar 

  21. A.G. Ramm, Stability estimates forobstacle scattering, J. Math. Anal. Appl. 188(3) 743–751 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. G. Ramm, Examples of nonuniqueness for an inverse problems of geophysics, Appl. Math. Lett. 8(4) 87–90 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  23. A. G. Ramm, Stability of the solution to 3D inverse scattering problems with fixed-energy data, Inverse Problems in Mechanics, (Proc. ASME, AMD-Vol. 186 1994), pp. 99-102.

    Google Scholar 

  24. A. G. Ramm, Remark on recent papers by R. Kleinman, T. Angeli and coauthors

    Google Scholar 

  25. A. G. Ramm and P. Werner, On limit amplitude principle, Jour. fuer die reine und angew. Math. 360 19–46 (1985).

    MathSciNet  MATH  Google Scholar 

  26. F. Rellich, Das Eigenwertproblem von Δu+ℝu = 0 in unendlichen Gebieten, Jber. d. deutsch. Math.-Verein. 53 47–65 (1943).

    MathSciNet  Google Scholar 

  27. K. J. Witsch, Examples of embedded eigenvalues for the Dirichlet—Laplacian in domains with infinite boundaries, Math. Meth. in the Appl. Sci. 12 177–182 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Xu, The propagating solution and far field patterns for acoustic harmonic waves in a finite depth ocean, Appl. Anal 35 129–151 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Xu, An injective far-field pattern operator and inverse scattering problem in a finite depth ocean, Proc. Edinburgh Math. Soc. 43 295–311 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramm, A.G., Makrakis, G.N. (1998). Scattering by Obstacles in Acoustic Waveguides. In: Ramm, A.G. (eds) Spectral and Scattering Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1552-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1552-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1554-2

  • Online ISBN: 978-1-4899-1552-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics