Skip to main content

On Embedded Eigenvalues of Perturbed Periodic Schrödinger Operators

  • Chapter

Abstract

The problem of non-existence of eigenvalues imbedded into the continuous spectrum is considered for Schrödinger operators with periodic potentials perturbed by a sufficiently fast decaying “impurity” potentials. Absence of embedded eigenvalues is shown in dimensions two and three if the periodic potential satisfies some additional condition on the corresponding Fermi surface. It is conjectured that generic periodic potentials satisfy this condition. It is stated that separable periodic potentials satisfy it, and hence in dimensions two and three a Schrödinger operator with a separable periodic potential perturbed by a sufficiently fast decaying “impurity” potential has no embedded eigenvalues. The proofs are only sketched. The complete proofs will be provided elsewhere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Alama, M. Avellaneda, P. A. Deift, and R. Hempel, On the existence of eigenvalues of a divergence form operator A + λB in a gap of σ (A), Asymptotic Anal. 8 (1994), no. 4, 311–314.

    MathSciNet  MATH  Google Scholar 

  2. S. Alama, P. A. Deift, and R. Hempel, Eigenvalue branches of the Schrödinger operator H — λW in a gap of σ (H), Commun. Math. Phys. 121 (1989), 291–321.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. S. Birman, The discrete spectrum of the periodic Schrödinger operator perturbed by a decreasing potential, Algebra i Analiz 8 (1996), no. 1, 3–20.

    MathSciNet  MATH  Google Scholar 

  4. M. S. Birman, On the spectrum of singular boundary value problems, Mat. Sbornik 55 (1961), no. 2, 125–173.

    MathSciNet  Google Scholar 

  5. M. S. Birman, On the discrete spectrum in the gaps of a perturbed periodic second order operator, Funct. Anal. Appl. 25 (1991), 158–161.

    Article  MathSciNet  MATH  Google Scholar 

  6. P. A. Deift and R. Hempel, On the existence of eigenvalues of the Schrödinger operator H— λW in a gap of σ (H), Commun. Math. Phys. 103 (1986), 461–490.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. S. P. Eastham, The Spectral Theory of Periodic Differential Equations, Scottish Acad. Press, Edinburgh-London 1973.

    MATH  Google Scholar 

  8. M. S. P. Eastham and H. Kalf, Schrödinger-type Operators with Continuous Spectra, Pitman. Boston 1982.

    Google Scholar 

  9. I. M. Gelfand, Expansion in eigenftinctions of an equation with periodic coefficients, Dokl. Akad. Nauk SSSR 73 (1950), 1117–1120.

    Google Scholar 

  10. F. Gesztesy and B. Simon, On a theorem of Deift and Hempel, Commun. Math. Phys. 116 (1988), 503–505.

    Article  MathSciNet  MATH  Google Scholar 

  11. I. M. Glazman, Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, I.P.S.T., Jerusalem 1965.

    Google Scholar 

  12. R. Hempel, Eigenvalue branches of the Schrödinger operator H ± λW in a spectral gap of H, J. Reine Angew. Math. 399 (1989), 38–59.

    MathSciNet  MATH  Google Scholar 

  13. L. Hörmander, The Analysis of Linear Partial Differential Operators, v. 2, Springer Verlag, Berlin 1983.

    Book  Google Scholar 

  14. T. Kato, Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math. 12 (1959), 403–425.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Kuchment, Floquet Theory for Partial Differential Equations, Birkhäuser, Basel 1993.

    Book  MATH  Google Scholar 

  16. E. M. Landis, On some properties of solutions of elliptic equations, Dokl. Akad. Nauk SSSR, 107 (1956), 640–643.

    MathSciNet  MATH  Google Scholar 

  17. S. Z. Levendorskii, Asymptotic formulas with remainder estimates for eigenvalue branches of the Schrödinger operator HλW in a gap of H. To appear in Transactions of American Mathematical Society.

    Google Scholar 

  18. S. Z. Levendorskii and S. I. Boyarchenko, An asymptotic formula for the number of eigenvalue branches of a divergence form operator AB in a spectral gap of A. To appear in Communications in Part. Differ. Equat.

    Google Scholar 

  19. S. Z. Levendorskii, Lower bounds for the number of eigenvalue branches for the Schrödinger operator H—λW in a gap of H: the case of indefinite W, Comm. partial Diff. Equat. 20 (1995), no. 5-6, 827–854.

    Article  MathSciNet  Google Scholar 

  20. V. Meshkov, On the possible rate of decay at infinity of solutions of second order partial differential equations, Mat. Sbornik, 182 (1991), no. 3, 364–383. English translation in Math. USSR Sbornik 72 (1992), no. 2, 343-351.

    MathSciNet  MATH  Google Scholar 

  21. F. Odeh, J. B. Keller, Partial differential equations with periodic coefficients and Bloch waves in crystals, J. Math. Phys. 5 (1964), 1499–1504.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. D. Raikov, Eigenvalue asymptotics for the Schrödinger operator with perturbed periodic potential, Invent. Math. 110 (1992), 75–93.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Reed and B. Simon, Methods of Modern Mathematical Physics v. 4, Acad. Press, NY 1978.

    MATH  Google Scholar 

  24. F. S. Rofe-Beketov, A test for the finiteness of the number of discrete levels introduced into the gaps of a continuous spectrum by perturbations of a periodic potential, Soviet Math. Dokl. 5 (1964), 689–692.

    MATH  Google Scholar 

  25. F. S. Rofe-Beketov, Spectrum perturbations, the Knezer-type constants and the effective mass of zones-type potentials, in “Constructive Theory of Functions’84,” Sofia 1984, p.757-766.

    Google Scholar 

  26. G. Roach, B. Zhang, A transmission problem for the reduced wave equation in inhomogeneous media with an infinite interface, Proc. R. Soc. London, A, 436 (1992), 121–140

    Article  MathSciNet  MATH  Google Scholar 

  27. A. V. Sobolev, Weyl asymptotics for the discrete spectrum of the perturbed Hill operator, Adv. Sov. Math. 7 (1991), 159–178.

    MathSciNet  Google Scholar 

  28. E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Part II, Claredon Press, Oxford 1958.

    Google Scholar 

  29. B. Vainberg, Principles of radiation, limiting absorption and limiting amplitude in the general theory of partial differential equations, Russian Math. Surveys 21 (1966), no. 3, 115–193.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kuchment, P., Vainberg, B. (1998). On Embedded Eigenvalues of Perturbed Periodic Schrödinger Operators. In: Ramm, A.G. (eds) Spectral and Scattering Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1552-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1552-8_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1554-2

  • Online ISBN: 978-1-4899-1552-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics