Skip to main content

Abstract

This chapter is based on the Bert La Du — ASPET plenary lecture delivered by Jean Massoulié at the opening of the Sixth International Meeting on Cholinesterases. It is a pleasure and an honour to dedicate this discussion of the diversity of acetylcholinesterase forms to Bert La Du, whose in depth approach to the molecular pharmacogenetics of the sister enzyme, butyrylcholinesterase, has always been a source of inspiration for us, because of the strong similarities and considerable differences between the two enzyme systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sussman, J.L., Harel, M., Frolow, F., Oefner, C, Goldman, A., Toker, L. and Silman, I. (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253, 872–879.

    Article  PubMed  CAS  Google Scholar 

  2. Ollis, D.L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S.M., Harel, M., Remington, S.J., Silman, I., Schrag, J. and et, a. (1992) The alpha/beta hydrolase fold. Protein Eng. 5, 197–211.

    Article  PubMed  CAS  Google Scholar 

  3. Cygler, M., Schrag, J.D., Sussman, J.L., Harel, M., Silman, L, Gentry, M.K. and Doctor, B.P. (1993) Relationship between sequence conservation and three-dimensional structure in a large family of esterases, lipases, and related proteins. Protein Sci. 2, 366–382.

    Article  PubMed  CAS  Google Scholar 

  4. Massoulié, J., Pezzementi, L., Bon, S., Krejci, E. and Vallette, F.M. (1993) Molecular and cellular biology of cholinesterases. Prog. Neurosci. 41, 31–91

    Article  Google Scholar 

  5. Chatel, J.M., Anselmet, A., Vallette, F.M. and Massoulié, J. (1994) Multi-level regulation of acetylcholinesterase biosynthesis and maturation. Biochem. Soc. Trans. 22, 735–740.

    PubMed  CAS  Google Scholar 

  6. Quinn, D.M. (1987) Acetylcholinesterase: enzyme structure, reaction dynamics, and virtual transition states. Chem. Rev. 87, 955–979.

    Article  CAS  Google Scholar 

  7. Gilson, M.K., Straatsma, T.P., McCammon, J.A., Ripoll, D.R., Faerman, C.H., Axelsen, P.H., Silman, I. and Sussman, J.L. (1994) Open “back door” in a molecular dynamics simulation of acetylcholinesterase. Science 263, 1276–1278.

    Article  PubMed  CAS  Google Scholar 

  8. Kronman, C., Ordentlich, A., Barak, D., Velan, B. and Shafferman, A. (1994) The “back door” hypothesis for product clearance in acetylcholinesterase challenged by site-directed mutagenesis. J. Biol. Chem. 269, 27819–27822.

    PubMed  CAS  Google Scholar 

  9. Faerman, C., Ripoll, D., Bon, S., Le Feuvre, Y., Morel, N., Massoulié, J., Sussman, J.L. and Silman, I. (1996) Site-directed mutants designed to test back-door hypotheses of acetylcholinesterase function. FEBS Lett. 386, 65–71.

    Article  PubMed  CAS  Google Scholar 

  10. Grauso, M., Culetto, E., Combes, D., Fedon, Y., Toutant, J.-P. and Arpagaus, M. (1998) Existence of four acetylcholinesterase genes in the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. FEBS Lett. 424, 279–284.

    Article  PubMed  CAS  Google Scholar 

  11. Sutherland, D., McClellan, D.S., Milner, D., Soong, W., Axon, N., Sanders, M., Hester, A., Kao, Y.-H., Poczatek, T., Routt, S. and Pezzementi, L. (1997) Two cholinesterase activities and genes are present in amphioxus. J. Exp. Zool. 277, 213–229.

    Article  PubMed  CAS  Google Scholar 

  12. Harel, M., Sussman, J.L., Krejci, E., Bon, S., Chanal, P., Massoulié, J. and Silman, I. (1992) Conversion of acetylcholinesterase to butyrylcholinesterase: modeling and mutagenesis. Proc Natl Acad Sci USA 89, 10827–31

    Article  PubMed  CAS  Google Scholar 

  13. Ordentlich, A., Barak, D., Kronman, C., Flashner, Y, Leitner, M., Segall, Y, Ariel, N., Cohen, S., Velan, B. and Shafferman, A. (1993) Dissection of the human acetylcholinesterase active center determinants of substrate specificity. Identification of residues constituting the anionic site, the hydrophobic site, and the acyl pocket. J. Biol. Chem. 268, 17083–17095.

    PubMed  CAS  Google Scholar 

  14. Radic, Z., Pickering, N.A., Vellom, D.C., Camp, S. and Taylor, P. (1993) Three distinct domains in the cholinesterase molecule confer selectivity for acetyl-and butyrylcholinesterase inhibitors. Biochemistry 32, 12074–12084.

    Article  PubMed  CAS  Google Scholar 

  15. Vellom, D.C., Radic, Z., Li, Y, Pickering, N.A., Camp, S. and Taylor, P. (1993) Amino acid residues controlling acetylcholinesterase and butyrylcholinesterase specificity. Biochemistry 32, 12–17.

    Article  PubMed  CAS  Google Scholar 

  16. Vigny, M., Bon, S., Massoulié, J. and Leterrier, F. (1978) Active-site catalytic efficiency of acetylcholinesterase molecular forms in Electrophorus, Torpedo, rat and chicken. Eur. J. Biochem. 85, 317–323.

    Article  PubMed  CAS  Google Scholar 

  17. Frobert, Y, Créminon, C., Cousin, X., Rémy, M.H., Chatel, J.M., Bon, S., Bon, C. and Grassi, J. (1997) Acetylcholinesterases from Elapidae snake venoms: biochemical, immunological and enzymatic characterization. Biochim. Biophys. Acta 1339, 253–267

    Article  PubMed  CAS  Google Scholar 

  18. Fournier, D., Karch, F., Bride, J.-M., Hall, L.M.C., Bergé, J.-B. and Spierer, P. (1990) Drosophila melanogaster acetylcholinesterase gene: structure, evolution and mutations. J. Mol. Biol. 210, 15–22.

    Article  Google Scholar 

  19. Maulet, Y, Camp, S., Gibney, G., Rachinsky, T.L., Ekstrom, T.J. and Taylor, P. (1990) Single gene encodes glycophospholipid-anchored and asymmetric acetylcholinesterase forms: alternative coding exons contain inverted repeat sequences. Neuron 4, 289–301

    Article  PubMed  CAS  Google Scholar 

  20. Gibney, G., MacPhee-Quigley, K., Thompson, B., Vedvick, T., Low, M.G., Taylor, S.S. and Taylor, P. (1988) Divergence in primary structure between the molecular forms of acetylcholinesterase. J. Biol. Chem. 263, 1140–1145.

    PubMed  CAS  Google Scholar 

  21. Sikorav, J.L., Duval, N., Anselmet, A., Bon, S., Krejci, E., Legay, C., Osterlund, M., Reimund, B. and Massoulié, J. (1988) Complex alternative splicing of acetylcholinesterase transcripts in Torpedo electric organ; primary structure of the precursor of the glycolipid-anchored dimeric form. EMBO J. 7, 2983–2993.

    PubMed  CAS  Google Scholar 

  22. Simon, S. and Massoulié, J. (1997) Cloning and expression of acetylcholinesterase from Electrophorus: splicing pattern of the 3′ exons in vivo and in transfected mammalian cells. J. Biol. Chem. 273, 33045–33055.

    Article  Google Scholar 

  23. Cousin, X., Bon, S., Massoulié, J. and Bon, C. (1998) Identification of a novel type of alternatively spliced exon from the acetylcholinesterase gene of Bungarus fasciatus. Molecular forms of acetylcholinesterase in the snake liver and muscle. J. Biol. Chem. 273, 9812–9820.

    Article  PubMed  CAS  Google Scholar 

  24. Li, Y, Camp, S., Rachinsky, T.L., Getman, D. and Taylor, P. (1991) Gene structure of mammalian acetylcholinesterase. Alternative exons dictate tissue-specific expression. J. Biol. Chem. 266, 23083–23090.

    PubMed  CAS  Google Scholar 

  25. Arpagaus, M., Kott, M., Vatsis, K.P., Bartels, C.F., La Du, B.N. and Lockridge, O. (1990) Structure of the gene for human butyrylcholinesterase. Evidence for a single copy. Biochemistry 29, 124–131.

    Article  PubMed  CAS  Google Scholar 

  26. Cousin, X., Hotelier, T., Liévin, P., Toutant, J.P. and Chatonnet, A. (1996) A Cholinesterase genes server (ESTHER): a database of cholinesterase-related sequences for multiple alignments, phylogeetic relationships, mutations and structural data retrieval. Nucleic Acids Res. 24, 132–136.

    Article  PubMed  CAS  Google Scholar 

  27. Allemand, P., Bon, S., Massoulié, J. and Vigny, M. (1981) The quaternary structure of chicken acetylcholinesterase and butyrylcholinesterase; effect of collagenase and trypsin. J. Neurochem. 36, 860–867.

    Article  PubMed  CAS  Google Scholar 

  28. Li, Y., Camp, S. and Taylor, P. (1993) Tissue-specific expression and alternative mRNA processing of the mammalian acetylcholinesterase gene. J. Biol. Chem. 268, 5790–5797.

    PubMed  CAS  Google Scholar 

  29. Legay, C., Bon, S. and Massoulié, J. (1993) Expression of a cDNA encoding the glycolipid-anchored form of rat acetylcholinesterase. Febs Lett 315, 163–6

    Article  PubMed  CAS  Google Scholar 

  30. Legay, C., Huchet, M., Massoulié, J. and Changeux, J.P. (1995) Developmental regulation of acetylcholinesterase transcripts in the mouse diaphragm: alternative splicing and focalization. Eur. J. Neurosci. 7, 1803–1809.

    Article  PubMed  CAS  Google Scholar 

  31. Kaufer, D., Friedman, A., Seidman, S. and Soreq, H. (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393, 373–377.

    Article  PubMed  CAS  Google Scholar 

  32. Futerman, A.H., Low, M.G., Michaelson, D.M. and Silman, I. (1985) Solubilization of membrane-bound acetylcholinesterase by a phosphatidylinositol-specific phospholipase C. J. Neurochem. 45, 1487–1494.

    Article  PubMed  CAS  Google Scholar 

  33. Silman, I. and Futerman, A.H. (1987) Modes of attachment of acetylcholinesterase to the surface membrane. Eur. J. Biochem. 170, 11–22.

    Article  PubMed  CAS  Google Scholar 

  34. Silman, I. and Futerman, A. H. (1987) Posttranslational modification as a means of anchoring acetylcholinesterase to the cell surface. Biopolymers 26 (Suppl.), 241–253.

    Article  Google Scholar 

  35. Arpagaus, M., Richier, P., Bergé, J.-B. and Toutant, J.-P. (1992) Acetylcholinesterases of the nematode Steinernema carpocapsae. Characterization of two types of amphiphilic forms differing in their mode of membrane association. Eur. J. Biochem. 207, 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  36. Inestrosa, N.C., Fuentes, M.E., Anglister, L., Futerman, A.H. and Silman, I. (1988) A membrane-associated dimer of acetylcholinesterase from Xenopus skeletal muscle is solubilized by phosphatidylinositol-specific phospholipase C. Neurosci. Lett. 90, 186–190.

    Article  PubMed  CAS  Google Scholar 

  37. Giles, K. (1997) Interactions underlying subunit association in cholinesterases. Protein Eng. 10, 677–685.

    Article  PubMed  CAS  Google Scholar 

  38. Bon, S., Toutant, J.P., Méflah, K. and Massoulié, J. (1988) Amphiphilic and nonamphiphilic forms of Torpedo cholinesterases: II. Electrophoretic variants and phosphatidylinositol phospholipase C-sensitive and-insensitive forms. J. Neurochem. 51, 786–794.

    Article  PubMed  CAS  Google Scholar 

  39. Bon, S., Toutant, J.P., Méflah, K. and Massoulié, J. (1988) Amphiphilic and nonamphiphilic forms of Torpedo cholinesterases: I. Solubility and aggregation properties. J. Neurochem. 51, 776–785.

    Article  PubMed  CAS  Google Scholar 

  40. Bon, S., Rosenberry, T.L. and Massoulié, J. (1991) Amphiphilic, glycophosphatidylinositol-specific phospholipase C (PI-PLC)-insensitive monomers and dimers of acetylcholinesterase. Cell Mol. Neurobiol. 11, 157–172.

    Article  PubMed  CAS  Google Scholar 

  41. Cousin, X., Créminon, C., Grassi, J., Méflah, K., Cornu, G., Saliou, B., Bon, S., Massoulié, J. and Bon, C. (1996) Acetylcholinesterase from Bungarus venom: a monomeric species. FEBS Lett. 387, 196–200.

    Article  PubMed  CAS  Google Scholar 

  42. Arpagaus, M., Fedon, Y., Cousin, X., Chatonnet, A., Bergé, J.-B., Fournier, D. and Toutant, J.-P. (1994) cDNA sequence, gene structure, and in vitro expression of ace-1, the gene encoding acetylcholinesterase of class A in the nematode Caenorhabditis elegans. J. Biol. Chem. 269, 9957–9965.

    PubMed  CAS  Google Scholar 

  43. Grauso, M., Culetto, E., Bergé, J.-B., Toutant, J.-P. and Arpagaus, M. (1996) Sequence comparison of ACE-1, the gene encoding acetylcholinesterase of class A, in the two nematodes Caenorhabditis elegans and Caenorhabditis briggsae. DNA Seq. 6, 217–227.

    PubMed  CAS  Google Scholar 

  44. Fuentes, M.E. and Taylor, P. (1993) Control of acetylcholinesterase gene expression during myogenesis. Neuron 10, 679–687.

    Article  PubMed  CAS  Google Scholar 

  45. Cousin, X., Bon, S., Duval, N., Massoulié, J. and Bon, C. (1996) Cloning and expression of acetylcholinesterase from Bungarus fasciatus venom. A new type of COOH-terminal domain; involvement of a positively charged residue in the peripheral site. J. Biol. Chem. 271, 15099–15108.

    Article  PubMed  CAS  Google Scholar 

  46. Chatel, J.M., Grassi, J., Frobert, Y, Massoulié, J. and Vallette, F.M. (1993) Existence of an inactive pool of acetylcholinesterase in chicken brain. Proc. Natl Acad. Sci. USA 90, 2476–2480

    Article  PubMed  CAS  Google Scholar 

  47. Chatel, J.M., Vallette, F.M., Massoulié, J. and Grassi, J. (1993) A conformation-dependent monoclonal antibody against active chicken acetylcholinesterase. FEBS Lett. 319, 12–15.

    Article  PubMed  CAS  Google Scholar 

  48. Chatel, J.M., Eichler, J., Vallette, F.M., Bon, S., Massoulié, J. and Grassi, J. (1994) Two-site immunora-diometric assay of chicken acetylcholinesterase: active and inactive molecular forms in brain and muscle. J. Neurochem. 63, 1111–1118.

    Article  PubMed  CAS  Google Scholar 

  49. Anselmet, A., Fauquet, M., Chatel, J.M., Maulet, Y, Massoulié, J. and Vallette, F.M. (1994) Evolution of acetylcholinesterase transcripts and molecular forms during development in the central nervous system of the quail. J. Neurochem. 62, 2158–2165.

    Article  PubMed  CAS  Google Scholar 

  50. Choi, R.C., Leung, P.W., Dong, T.T., Wan, D.C. and K.W., T. (1996) Calcitonin, gene-related peptide increases the expression of acetylcholinesterase in cultured chick myotubes. Neurosci. Lett. 217, 165–168.

    Article  PubMed  CAS  Google Scholar 

  51. Ferguson, M.A.J. and Williams, A.F. (1988) Cell surface anchoring of proteins via glycosylphosphatidyli-nositol structures. Ann. Rev. Biochem. 57, 285–320

    Article  PubMed  CAS  Google Scholar 

  52. Gerber, L.D., Kodukula, K. and Udenfriend, S. (1992) Phosphatidylinositol glycan (PI-G) anchored membrane proteins. J. Biol Chem. 267, 12168–12173.

    CAS  Google Scholar 

  53. Kodukula, K., Gerber, L.D., Amthauer, R., Brink, L. and Udenfriend, S. (1993) Biosynthesis of glycosyl-phosphatidylinositol (GPI)-anchored membrane proteins in intact cells: specific amino acid requirements adjacent to the site of cleavage and GPI attachment. J. Cell Biol. 120, 657–664.

    Article  PubMed  CAS  Google Scholar 

  54. Moran, P. and Caras, I.W. (1992) Proteins containing an uncleaved signal for glycophosphatidylinositol membrane anchor attachment are retained in a post-ER compartment. J. Cell Biol. 119, 763–772.

    Article  PubMed  CAS  Google Scholar 

  55. Moran, P. and Caras, I.W. (1994) Requirements for glycophosphatidylinositol attachment are similar but not identical in mammalian cells and parasitic protozoa. J. Cell Biol. 125, 333–343.

    Article  PubMed  CAS  Google Scholar 

  56. Bucht, G. and Hjalmarsson, K. (1996) Residues in Torpedo californica acetylcholinesterase necessary for processing to a glycosyl phosphatidylinositol-anchored form. Biochim. Biophys. Acta 1292, 223–232.

    Article  PubMed  Google Scholar 

  57. Haas, R., Jackson, B.C., Reinhold, B., Foster, J.D. and Rosenberry, T.L. (1996) Glycoinositol phospholipid anchor and protein C-terminus of bovine erythrocyte acetylcholinesterase: analysis by mass spectrometry and by protein and DNA sequencing. Biochem. J. 314, 817–825.

    PubMed  CAS  Google Scholar 

  58. Maxwell, S.E., Ramalingam, S., Gerber, L.D. and Udenfriend, S. (1995) Cleavage without anchor addition accompanies the processing of a nascent protein to its glycosylphosphatidylinositol-anchored form. Proc. Natl. Acad. Sci. U S A 92, 1550–1554.

    Article  PubMed  CAS  Google Scholar 

  59. Bon, S. and Massoulié, J. (1997) Quaternary associations of acetylcholinesterase. I Oligomeric associations of T subunits with and without the amino-terminal domain of the collagen tail. J. Biol. Chem. 272, 3007–3015

    Article  PubMed  CAS  Google Scholar 

  60. Morel, N. and Massoulié, J. (1997) Expression and processing of vertebrate acetylcholinesterase in the yeast Pichiapastoris. Biochem. J. 328, 121–129.

    PubMed  CAS  Google Scholar 

  61. Liao, J., Boschetti, N., Mortensen, V., Jensen, S.P., Koch, C., Norgaard-Pedersen, B. and Brodbeck, U. (1994) Characterization of salt-soluble forms of acetylcholinesterase from bovine brain. J. Neurochem. 63, 1446–1453.

    Article  PubMed  CAS  Google Scholar 

  62. Velan, B., Kronman, C., Flashner, Y. and Shafferman, A. (1994) Reversal of signal-mediated cellular retention by subunit assembly of human acetylcholinesterase. J. Biol. Chem. 269, 22719–22725.

    PubMed  CAS  Google Scholar 

  63. Krejci, E., Coussen, F., Duval, N., Chatel, J.M., Legay, C., Puype, M., Vandekerckhove, J., Cartaud, J., Bon, S. and Massoulié, J. (1991) Primary structure of a collagenic tail peptide of Torpedo acetylcholinesterase: co-expression with catalytic subunit induces the production of collagen-tailed forms in transfected cells. EMBO J. 10, 1285–1293.

    PubMed  CAS  Google Scholar 

  64. Krejci, E., Thomine, S., Boschetti, N., Legay, C., Sketelj, J. and Massoulié, J. (1997) The mammalian gene of acetylcholinesterase-associated collagen. J. Biol. Chem. 272, 22840–22847.

    Article  PubMed  CAS  Google Scholar 

  65. Duval, N., Krejci, E., Grassi, J., Coussen, F., Massoulié, J. and Bon, S. (1992) Molecular architecture of acetylcholinesterase collagen-tailed forms; construction of a glycolipid-tailed tetramer. EMBO J. 11, 3255–3261.

    PubMed  CAS  Google Scholar 

  66. Bon, S., Coussen, F. and Massoulié, J. (1997) Quaternary associations of acetylcholinesterase; II. the polyproline attachment domain of the collagen tail. J. Biol. Chem. 272, 3016–3021

    Article  PubMed  CAS  Google Scholar 

  67. Chan, D.C., Bedford, M.T. and Leder, P. (1996) Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. EMBO J. 15, 1045–1054.

    PubMed  CAS  Google Scholar 

  68. Lim, W.A., Richards, F.M. and Fox, R.O. (1994) Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372, 375–379

    Article  PubMed  CAS  Google Scholar 

  69. Yu, H., Chen, J.K., Feng, S., Dalgarno, D.C., Brauer, A.W. and Schreiber, S.L. (1994) Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76, 933–945.

    Article  PubMed  CAS  Google Scholar 

  70. Inestrosa, N.C., Roberts, W.L., Marshall, T.L. and Rosenberry, T.L. (1987) Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues. J. Biol. Chem. 262, 4441–4444.

    PubMed  CAS  Google Scholar 

  71. Gennari, K., Brunner, J. and Brodbeck, U. (1987) Tetrameric detergent-soluble acetylcholinesterase from human caudate nucleus: subunit composition and number of active sites. J. Neurochem. 49, 12–18.

    Article  PubMed  CAS  Google Scholar 

  72. Boschetti, N., Liao, J. and Brodbeck, U. (1994) The membrane form of acetylcholinesterase from rat brain contains a 20 kDa hydrophobic anchor. Neurochem Res 19, 359–65.

    Article  PubMed  CAS  Google Scholar 

  73. Boschetti, N. and Brodbeck, U. (1996) The membrane anchor of mammalian brain acetylcholinesterase consists of a single glycosylated protein of 22 kDa. FEBS Lett. 380, 133–136.

    Article  PubMed  CAS  Google Scholar 

  74. Massoulié, J., Sussman, J. L., Doctor, B. P., Soreq, H., Velan, B., Cygler, M., Rotundo, R. L., Shafferman, A., Silman, I. and Taylor, P. (1992) in Multidisciplinary approaches to cholinesterase functions. (Shafferman, A., and Velan, B., eds), pp. 285-288., Plenum Press, New York

    Google Scholar 

  75. Duval, N., Massoulié, J. and Bon, S. (1992) H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms. J. Cell Biol. 118, 641–653.

    Article  PubMed  CAS  Google Scholar 

  76. Bourne, Y., Taylor, P. and Marchot, P. (1995) Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell 83, 503–512.

    Article  PubMed  CAS  Google Scholar 

  77. Marchot, P., Ravelli, R.B., Raves, M.L., Bourne, Y, Vellom, D.C., Kanter, J., Camp, S., Sussman, J.L. and Taylor, P. (1996) Soluble monomeric acetylcholinesterase from mouse: expression, purification, and crystallization in complex with fasciculin. Protein Sci. 5, 672–679.

    Article  PubMed  CAS  Google Scholar 

  78. Velan, B., Grosfeld, H., Kronman, C., Leitner, M., Gozes, Y, Lazar, A., Flashner, Y, Marcus, D., Cohen, S. and Shafferman, A. (1991) The effect of elimination of intersubunit disulfide bonds on the activity, assembly, and secretion of recombinant human acetylcholinesterase. Expression of acetylcholinesterase Cys-580—>Ala mutant. J. Biol. Chem. 266, 23977–23984.

    PubMed  CAS  Google Scholar 

  79. Bon, S. and Massoulié, J. (1976) Molecular forms of Electrophorus acetylcholinesterase the catalytic subunits: fragmentation, intra-and inter-subunit disulfide bonds. FEBS Lett. 71, 273–278.

    Article  PubMed  CAS  Google Scholar 

  80. Lee, S.L., Heinemann, S. and Taylor, P. (1982) Structural characterization of the asymmetric (17 + 13) S forms of acetylcholinesterase from Torpedo. I. Analysis of subunit composition. J. Biol. Chem. 257, 12282–12291.

    PubMed  CAS  Google Scholar 

  81. Lee, S.L. and Taylor, P. (1982) Structural characterization of the asymmetric (17 + 13) S species of acetylcholinesterase from Torpedo. II. Component peptides obtained by selective proteolysis and disulfide bond reduction. J. Biol. Chem. 257, 12292–12301.

    PubMed  CAS  Google Scholar 

  82. Rotundo, R.L. (1984) Asymmetric acetylcholinesterase is assembled in the Golgi apparatus. Proc. Natl. Acad. Sci. USA 81, 479–483.

    Article  PubMed  CAS  Google Scholar 

  83. Toutant, J.P. and Massoulié, J. (1988) Cholinesterases: tissue and cellular distribution of molecular forms and their physiological regulation. Handb. Exp. Pharmacol. 86, 225–265.

    Article  Google Scholar 

  84. Jasmin, B.J. and Gisiger, V. (1990) Regulation by exercise of the pool of G4 acetylcholinesterase characterizing fast muscles: opposite effects of running training in antagonist muscles. J. Neurosci. 10, 1444–1454.

    PubMed  CAS  Google Scholar 

  85. Gisiger, V, Sherker, S. and Gardiner, P.F. (1991) Swimming training increases the G4 acetylcholinesterase content of both fast ankle extensors and flexors. FEBS Lett. 278, 271–273.

    Article  PubMed  CAS  Google Scholar 

  86. Kaupmann, K., Heimann, P., Jokusch, H. and Herbort, U. (1988) Dolichos biflorus agglutinin receptors in mouse muscle. I. Developmental expression in relation to synaptic acetylcholinesterase and to neuromuscular disease. Eur. J. Cell Biol. 46, 411–418.

    PubMed  CAS  Google Scholar 

  87. Scott, L.J.C., Bacou, F. and Sanes, J.R. (1988) A synapse-specific carbohydrate at the neuromuscular junction: association with both acetylcholinesterase and a glycolipid. J. Neurosci. 8, 932–944.

    PubMed  CAS  Google Scholar 

  88. Incardona, J.P. and Rosenberry, T.L. (1996) Replacement of the glycoinositol phospholipid anchor of Drosophila acetylcholinesterase with a transmembrane domain does not alter sorting in neurons and epithelia but results in behavioral defects. Mol. Biol. Cell 7, 613–630.

    Article  PubMed  CAS  Google Scholar 

  89. Hutchinson, D.O., Engel, A.G., Walls, T.J., Nakano, S., Camp, S., Taylor, P., Harper, C.M. and Brengman, J.M. (1993) The spectrum of congenital end-plate acetylcholinesterase deficiency. Ann. N. Y. Acad. Sci. 21, 469–486.

    Article  Google Scholar 

  90. Deprez, P., Signorelli, J. and Inestrosa, N.C. (1995) Effect of protamine on the solubilization of collagentailed acetylcholinesterase: potential heparin-binding consensus sequences in the tail of the enzyme. Biochim. Biophys. Acta 1252, 53–58.

    Article  PubMed  Google Scholar 

  91. Deprez, P. and Inestrosa, N.C. (1995) Two heparin-binding domains are present on the collagenic tail of asymmetric acetylcholinesterase. J. Biol. Chem. 270, 11043–11046.

    Article  PubMed  CAS  Google Scholar 

  92. Rossi, S.G. and Rotundo, R.L. (1996) Transient interactions between collagen-tailed acetylcholinesterase and sulfated proteoglycans prior to immobilization ion the extracellular matrix. J. Biol. Chem. 271, 1979–1987.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Massoulié, J. et al. (1998). Diversity and Processing of Acetylcholinesterase. In: Doctor, B.P., Taylor, P., Quinn, D.M., Rotundo, R.L., Gentry, M.K. (eds) Structure and Function of Cholinesterases and Related Proteins. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1540-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1540-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1542-9

  • Online ISBN: 978-1-4899-1540-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics