Skip to main content

Scanning Acoustic Microscopy

  • Chapter
Microanalysis of Solids

Abstract

Scanning acoustic microscopy is a form of microscopy based on the generation and detection of elastic waves in solids. The basic mechanism is the interaction of an acoustic wave with a specimen and the consequent generation of acoustic waves inside the material. Such interaction is characteristically different from optical or electronic interactions, and is mainly dependent on the mechanical properties of the specimen. As a consequence, acoustic microscopy provides an important and complementary source of information for the examination of materials. Two major advantages are obtained using an acoustic microscope. First, acoustic waves are capable of penetrating materials that are opaque to other kinds of radiation. As a result, the acoustic microscope can image subsurface characteristics of materials without the necessity of etching or coating the surface of the sample. The second advantage relies on the origin of contrast in acoustic microscopy lying in the interaction of elastic waves with local variations in mechanical properties. Using an acoustic microscope it is therefore possible to study, with high resolution and sensitivity, mechanical properties of the specimen such as density, elasticity, and viscosity. In the field of material science, applications of acoustic microscopy are quite wide and range from the analysis of cracks and other defects in engineering materials to the study of integrated circuits and electronic components. Moreover, recent advances in quantitative acoustic microscopy enable the determination of mechanical material parameters on a microscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atalar, A. (1978). An angular spectrum approach to contrast in reflection acoustic microscopy, J. Appl. Phys. 49, 5130–5139.

    Article  CAS  Google Scholar 

  • Atalar, A. (1979). A physical model for acoustic signatures, J. Appl. Phys. 50, 8237–8239.

    Article  CAS  Google Scholar 

  • Auld, B. A. (1985). In Rayleigh-Wave Theory and Applications (E. A. Ash and E. G. S. Paige, eds.), Springer-Verlag, Berlin, pp. 12–28.

    Chapter  Google Scholar 

  • Bertoni, H. L. (1984). Ray-optical evaluation of V(z) in the reflection acoustic microscope, IEEE Trans. SU-31, 105–116.

    Google Scholar 

  • Bertoni, H. L., and Tamir, T. (1973). Unified theory of Rayleigh angle phenomena for acoustic beams at liquid—solid interfaces, Appl. Phys. 2, 157–172.

    Article  Google Scholar 

  • Born, M., and Wolf, E. (1980). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Pergamon Press, Elmsford, N.Y.

    Google Scholar 

  • Brekhovskikh, L. M., and Godin, O. A. (1990). Acoustics of Layered Media I: Plane and Quasi-Plane Waves, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Briggs, G. A. D. (1992). Acoustic Microscopy, Clarendon Press, Oxford.

    Google Scholar 

  • Briggs, G. A. D. (1989). How sensitive is acoustic microscopy? Proc. EUROMAT `89.

    Google Scholar 

  • Briggs, G. A. D., Somekh, M. G., and Ilett, C. (1982). Acoustic microscopy in materials science, SPIE 368, 74–80.

    Article  Google Scholar 

  • Briggs, G. A. D., Rowe, J. M., Sinton, A. M., and Spencer, D. S. (1988). Quantitative methods in acoustic microscopy, IEEE 1988 Ultrasonics Symposium, pp. 743–749.

    Google Scholar 

  • Briggs, G. A. D., Daft, C. M. W., Fagan, A. F., Field, T. A., Lawrence, C. W., Montoto, M., Peck, S. D., Rodriguez-Rey, A., and Scruby, C. B. (1989). Acoustic microscopy of old and new materials, in Acoustical Imaging (H. Shimizu, N. Chubachi, and J. Kushibiki, eds.), Vol. 17, Plenum Press, New York pp. 1–16.

    Chapter  Google Scholar 

  • Briggs, G. A. D., Jenkins, P. J., and Hoppe, M. (1990). How fine a surface crack can you see in a scanning acoustic microscope? J. Microsc. (Oxford) 159, 15–32.

    Article  Google Scholar 

  • Derby, B., Briggs, G. A. D., and Wallach, E. R. (1983). Nondestructive testing and acoustic microscopy of diffusion bonds, J. Mater. Sci. 18, 2345–2353.

    Article  Google Scholar 

  • Fagan, A. F., Briggs, G. A. D., Czernuszka, J. T., and Scruby, C. B. (1991). Microstructural observations of two deformed P.S.Z. ceramics using acoustic microscopy, J. Mater. Sci. in press.

    Google Scholar 

  • Farnell, G. W. (1970). Properties of elastic surface waves, in Physical Acoustics VI ( W. P. Mason and R. N. Thurston, eds.), Academic Press, New York, pp. 109–166.

    Google Scholar 

  • Foster, J. S., and Rugar, D. (1985). Low-temperature acoustic microscopy, IEEE Trans. SU-32, 139–151.

    Google Scholar 

  • Hoppe, M., and Bereiter-Hahn, J. (1985). Applications of scanning acoustic microscopy-Survey and new aspects, IEEE Trans. SU-32, 289–301.

    Google Scholar 

  • Ilett, C., Somekh, M. G., and Briggs, G. A. D. (1984). Acoustic microscopy of elastic discontinuities, Proc. R. Soc. London Ser. A 393, 171–183.

    Article  Google Scholar 

  • Kulik, A., Gremaud, G., and Satish, S. (1990). Acoustic microscopy as a polyvalent tool in materials science, Trans. R. Microsc. Soc. 1, 85–90.

    Google Scholar 

  • Kushibiki, J., and Chubachi, N. (1985). Material characterization by line-focus-beam acoustic microscope, IEEE Trans. SU-32, 189–212.

    Google Scholar 

  • Kushibiki, J., Sannomiya, T., and Chubachi, N. (1980). Performance of sputtered Si02 film as an acoustic antireflection coating at sapphire/water interface, Electron. Lett. 16, 737–738.

    Article  CAS  Google Scholar 

  • Kushibiki, J., Maehara, H., and Chubachi, N. (1981a). Acoustic properties of evaporated chalcogenide glass films, Electron. Lett. 17, 322–323.

    Article  CAS  Google Scholar 

  • Kushibiki, J., Ohkubo, A., and Chubachi, N. (198lb). Linearly focused acoustic beams for acoustic microscopy, Electron. Lett. 17, 520–522.

    Article  Google Scholar 

  • Kushibiki, J., Horii, K., and Chubachi, N. (1983). Velocity measurement of multiple leaky waves on germanium by line-focus-beam acoustic microscope using FFT, Electron. Lett. 19, 404–405.

    Article  CAS  Google Scholar 

  • Kushibiki, J., Ishikawa, T., and Chubachi, N. (1990). Cut-off characteristics of leaky Sezawa modes and pseudo-Sezawa modes for thin-film characterization, Appl. Phys. Lett. 57, 1967–1969.

    Article  CAS  Google Scholar 

  • Lawrence, C. W. (1990). Acoustic microscopy of ceramic fibre composites, D. Phil. thesis, Oxford University.

    Google Scholar 

  • Lawrence, C. W., Scruby, C. B., Briggs, G. A. D., and Dunhill, A. (1990). Crack detection in silicon nitride by acoustic microscopy, NDT Int. 23, 3–10.

    Article  CAS  Google Scholar 

  • Lemons, R. A., and Quate, C. F. (1974). Acoustic microscope-scanning version, Appl. Phys. Lett. 24, 163–165.

    Article  Google Scholar 

  • Liang, K. K., Kino, G. S., and Khuri-Yakub, B. (1985). Material characterisation by the inversion of V(z), IEEE Trans. SU-32, 213–224.

    Google Scholar 

  • Miller, A. J. (1985). Scanning acoustic microscopy in electronics research, IEEE Trans. SU-32, 320–324.

    Google Scholar 

  • Muha, M. S., Moulthrop, A. A., and Kozlowski, G. C. (1990). Acoustic microscopy at 15.3 GHz in pressurized superfluid helium, Appl. Phys. Lett. 56, 1019–1021.

    Article  CAS  Google Scholar 

  • Obata, M., Shimada, H., and Mihara, T. (1990). Stress dependence of leaky surface wave on PMMA by line-focus-beam acoustic microscope, Exp. Mech. March, 34–39.

    Google Scholar 

  • Pinkerton, J. M. M. (1949). The absorption of ultrasonic waves in liquids and its relation to molecular constitution, Proc. Phys. Soc. 62, 129–140.

    Article  Google Scholar 

  • Somekh, M. G., Briggs, G. A. D., and Ilett, C. (1984). The effect of anisotropy on contrast in the scanning acoustic microscope, Philos. Mag. 49, 179–204.

    Article  CAS  Google Scholar 

  • Somekh, M. G., Bertoni, H. L., Briggs, G. A. D., and Burton, N. J. (1985). A two-dimensional imaging theory of surface discontinuities with the scanning acoustic microscope, Proc. R. Soc. London Ser. A 401, 29–51.

    Article  Google Scholar 

  • Thompson, R. B., Li, Y., Spitzig, W. A., Briggs, G. A. D., Fagan, A. F., and Kushibiki, J. (1990). Characterization of the texture of heavily deformed metal—metal composites with acoustic microscopy, in Review of Progress in Quantitative Nondestructive Evaluation 9 (D. O. Thompson and D. E. Chimenti, eds.), Plenum Press, New York, pp. 1433–1440.

    Google Scholar 

  • Truell, R., Elbaum, C., and Chick, B. B. (1969). Ultrasonic Methods in Solid State Physics, Academic Press, New York.

    Google Scholar 

  • Viktorov, I. A. (1969). Rayleigh and Lamb Waves, Physical Theory and Applications, Plenum Press, New York.

    Google Scholar 

  • Weaver, J. M. R. (1986). The ultrasonic imaging of plastic deformation, D. Phil. Thesis, Oxford University.

    Google Scholar 

  • Weaver, J. M. R., and Briggs, G. A. D. (1985). Acoustic microscopy techniques for observing dislocation damping, J. Phys. (Paris) 12 C10, 743–750.

    Google Scholar 

  • Weglein, R. D. (1979). A model for predicting acoustic materials signatures, Appl. Phys. Lett. 34, 179–181.

    Article  CAS  Google Scholar 

  • Yamanaka, K., and Enomoto, Y. (1982). Observation of surface cracks with scanning acoustic microscope, J. Appl. Phys. 53, 846–850.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mutti, P., Briggs, G.A.D. (1994). Scanning Acoustic Microscopy. In: Yacobi, B.G., Holt, D.B., Kazmerski, L.L. (eds) Microanalysis of Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1492-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1492-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1494-1

  • Online ISBN: 978-1-4899-1492-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics