Skip to main content

Low-Energy Electron Collisions with Metal Clusters: Electron Capture and Cluster Fragmentation

  • Chapter
Electron Collisions with Molecules, Clusters, and Surfaces

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

Clusters are aggregates of a finite number of identical atoms or molecules, containing from a few to thousands of particles. They represent a form of matter intermediate between atoms and small molecules on one end and bulk solids and liquids on the other. Cluster research is motivated by the interest in mapping out the transition between the aforementioned limits, as well as by the fact that clusters possess a number of unique properties of their own [1]. In order to be able to monitor the atom-by-atom evolution of cluster properties, and to avoid their distortion by substrate effects, a large number of studies are performed on free clusters, making use of molecular beam techniques and mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Proc. of the Sixth Intern. Symposium on Small Particles and Inorganic Clusters, Z. Phys. D 26 (1993).

    Google Scholar 

  2. W.A. de Heer, W.D. Knight, M.Y. Chou and M.L. Cohen, in Solid State Physics, ed. by H. Ehrenreich and D. Turnbull (Academic, New York, 1987), vol. 40.

    Google Scholar 

  3. V.O. Nesterenko, Sov. J. Part. Nucl. 23, 726 (1992).

    Google Scholar 

  4. W.A. de Heer, Rev. Mod. Phys. (July 1993).

    Google Scholar 

  5. V.V. Kresin, Physics Reports 220, 1 (1992).

    Article  ADS  Google Scholar 

  6. T.D. Märk, Int. J. Mass Spectrom. Ion Proc. 79, 1 (1987).

    Article  Google Scholar 

  7. A. Hoareau, B. Cabaud and P. Melinon, Surf. Sci. 106, 195 (1981), and references therein.

    Article  ADS  Google Scholar 

  8. R.E. Walstedt and R.F. Bell, Phys.Rev. A 33, 2830 (1986), and references therein.

    Article  ADS  Google Scholar 

  9. T.M. Miller, A. Kasdan, and B. Bederson, Phys. Rev. A 25, 1777 (1982).

    Article  ADS  Google Scholar 

  10. K. Franzreb, A. Wucher, and H. Oechsner, Z. Phys. D 19, 77 (1991).

    Article  ADS  Google Scholar 

  11. V.V. Kresin, A. Scheidemann, and W.D. Knight, Phys.Rev. A 44, R4106 (1991).

    Article  ADS  Google Scholar 

  12. V.V. Kresin, A. Scheidemann, and W.D. Knight, in Physics and Chemistry of Finite Systems: From Clusters to Crystals, ed. by P. Jena, S.N. Khanna, and B.K. Rao (Kluwer, Dordrecht, 1992).

    Google Scholar 

  13. M. Vollmer, K. Selby, V. Kresin, J. Masui, M. Kruger, and W.D. Knight, Rev. Sci. Instrum. 59, 1965 (1988).

    Article  ADS  Google Scholar 

  14. K. Selby, V. Kresin, J. Masui, M. Vollmer, W.A. de Heer, A. Scheidemann, and W.D. Knight, Phys. Rev. B 43, 4565 (1991).

    Article  ADS  Google Scholar 

  15. R.E. Collins, B.B. Aubrey, P.N. Eisner, and R.J. Celotta, Rev. Sci. Instrum. 41, 1403 (1970).

    Article  ADS  Google Scholar 

  16. V.V. Kresin, Ph.D. Thesis, University of California, Berkeley (1991).

    Google Scholar 

  17. C. Bréchignac, Ph. Cahuzac, J. Leygnier, and J. Weiner, J. Chem. Phys. 90, 1492 (1989).

    Article  ADS  Google Scholar 

  18. C. Joachain, Quantum Collision Theory (North-Holland, Amsterdam, 1975).

    Google Scholar 

  19. H.A. Bethe and R. Jackiw, Intermediate Quantum Mechanics, 2nd Ed. (Benjamin, Menlo Park, 1968), Ch. 14.

    Google Scholar 

  20. E.W. McDaniel, Atomic Collisions: Electron and Photon Projectiles (Wiley, New York, 1989).

    Google Scholar 

  21. W.D. Knight, K. Clemenger, W.A. de Heer, and W.A. Saunders, Phys. Rev. B 31, 2539 (1985).

    Article  ADS  Google Scholar 

  22. K. Clemenger, Ph.D. Thesis, University of California, Berkeley, 1985.

    Google Scholar 

  23. The reason why the Na40 cross section spectrum does not display a distinct rise region is not clear; it is possible that the onset of this region is shifted towards lower impact energies where the electron gun current and the cluster signal are too weak to observe enhanced depletion (at low energies the electron gun current decreases exponentially).

    Google Scholar 

  24. K. Selby, M. Vollmer, J. Masui, V. Kresin, W.A. de Heer, and W.D. Knight, Phys. Rev. B 40, 5417 (1989).

    Article  ADS  Google Scholar 

  25. H. Kühling, K. Kobe, S. Rutz, E. Schreiber, and L. Wöste, Z. Phys. D 26, 33 (1993).

    Article  ADS  Google Scholar 

  26. T. Baumert, R. Thalweiser, V. Weiß, and G. Gerber, Z. Phys. D 26, 131 (1993).

    Article  ADS  Google Scholar 

  27. L. Bewig, U. Buck, C. Mehlmann, and M. Winter, Z. Phys. D 26, S104 (1993).

    Article  ADS  Google Scholar 

  28. N.F. Mott and H.S.W. Massey, The Theory of Atomic Collisions, 3rd ed. (Oxford University Press, Oxford, 1965), Chapter XII.

    Google Scholar 

  29. V.V. Kresin, Phys. Rev B 38, 3741 (1988).

    Article  ADS  Google Scholar 

  30. M.M. Kappes, S. Schär, U. Röthlisberger, C. Yeretzian, and E. Schumacher, Chem. Phys. Lett. 143, 251 (1988).

    Article  ADS  Google Scholar 

  31. M. Lezius, P. Scheier, and T.D. Märk, Chem. Phys. Lett. 203, 232 (1993).

    Article  ADS  Google Scholar 

  32. K.J. Taylor, C. Jin, J. Conceicao, L.-S. Wang, O. Cheshnovsky, B.R. Johnson, P.J. Nordlander, and R.E. Smalley, J. Chem. Phys. 93, 7515 (1990).

    Article  ADS  Google Scholar 

  33. L.-S. Wang, J. Conceicao, C. Jin, and R.E. Smalley, Chem. Phys. Lett. 182, 5 (1991).

    Article  ADS  Google Scholar 

  34. W.M. Huo and J.A. Sheehy, presented at Intern. Symp. on Electron Collisions with Molecules, Clusters and Surfaces, July 1993 (this volume).

    Google Scholar 

  35. B. Wasserman and W. Ekardt, Z. Phys. D 19, 97 (1991).

    Article  ADS  Google Scholar 

  36. V.V. Kresin and A. Scheidemann, J. Chem. Phys. 98, 6982 (1993).

    Article  ADS  Google Scholar 

  37. V.V. Kresin, A. Scheidemann, and W.D. Knight, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kresin, V.V., Scheidemann, A., Knight, W.D. (1994). Low-Energy Electron Collisions with Metal Clusters: Electron Capture and Cluster Fragmentation. In: Ehrhardt, H., Morgan, L.A. (eds) Electron Collisions with Molecules, Clusters, and Surfaces. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1489-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1489-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1491-0

  • Online ISBN: 978-1-4899-1489-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics