Skip to main content

The Development of Si and SiGe Technologies for Microwave and Millimeter-Wave Integrated Circuits

  • Chapter
Directions for the Next Generation of MMIC Devices and Systems

Abstract

Historically, microwave technology was developed by military and space agencies from around the world to satisfy their unique radar, communication, and science applications. Throughout this development phase, the sole goal was to improve the performance of the microwave circuits and components comprising the systems. For example, power amplifiers with output powers of several watts over broad bandwidths, low noise amplifiers with noise figures as low as 3 dB at 94 GHz, stable oscillators with low noise characteristics and high output power, and electronically steerable antennas were required. In addition, the reliability of the systems had to be increased because of the high monetary and human cost if a failure occurred.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. P. Voinigescu, S. W. Tarasewicz, T. MacElwee, and J. Ilowski, An assessment of the state-of-the-art 0.5 μm bulk CMOS technology for RF applications, Proc. 1995 IEDM: 721 (1995).

    Google Scholar 

  2. M. Ugajin, J. Kodate, Y. Kobayashi, S. Konaka, and T. Sakai, Very-high fT and fmax silicon bipolar transistors using ultra-high-performance super self-aligned process technology for low-energy and ultra-high-speed LSI’s, Proc. 1995 IEDM: 735 (1995).

    Google Scholar 

  3. A. Schuppen, U. Erben, A. Gruhle, H. Kibbel, H. Schumacher, and U. Konig, Enhanced SiGe heterojunction bipolar transistors with 160 GHz-fmax, Proc. 1995 IEDM: 743 (1995).

    Google Scholar 

  4. S. H. Li, J. M. Hinckley, J. Singh, and P. K. Bhattacharya, Carrier velocity-field characteristics and alloy scattering potential in Si1-xGex/Si, Appl. Phys. Lett. 63 (10): 1393 (1993).

    Article  Google Scholar 

  5. J. C. Bean, Silicon-based semiconductor heterostructures: column IV bandgap engineering, Proc. IEEE Vol. 80, No. 4: 571 (1992).

    Article  Google Scholar 

  6. P. M. Mooney, J. L. Jordan-Sweet, J. O. Chu, and F. K. LeGoues, Evolution of strain relaxation in step-graded SiGe/Si structures, Appl. Phys. Lett., 66: 3642 (1995).

    Article  Google Scholar 

  7. M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney, and J. O. Chu, Influence of misfit dislocations on the surface morphology of Si1-xGex films, Appl. Phys. Lett., 66: 724 (1995).

    Article  Google Scholar 

  8. J. H. Li, V. Holy, G. Bauer, J. F. Nutzel, and G. Abstreiter, Strain relaxation of Ge1-xSix buffer systems grown on Ge (001), Appl. Phys. Lett., 67: 789 (1995).

    Article  Google Scholar 

  9. F. K. LeGoues, B. S. Meyerson, and J. F. Morar, Anomalous strain relaxation in SiGe thin films and superlattices, Phys. Rev. Lett, 66: 2903 (1991).

    Article  Google Scholar 

  10. G. Kissinger, T. Morgenstern, G. Morgenstern, and H. Richter, Stepwise equilibrated graded GexSi1-x buffer with very low threading dislocation density on Si (001), Appl. Phys. Lett., 66: 2083 (1995).

    Article  Google Scholar 

  11. F. K. LeGoues, Self-aligned sources for dislocation nucleation: the key to low threading dislocation densities in compositionally graded thin films grown at low temperature, Phys. Rev. Lett., 72: 876 (1994).

    Article  Google Scholar 

  12. K. Ismail, J. O. Chu, and B. S. Meyerson, High hole mobility in SiGe alloys for device applications, Appl. Phys. Lett., 64: 3124 (1994).

    Article  Google Scholar 

  13. K. K. Linder, F. C. Zhang, J.-S. Rieh, and P. Bhattacharya, Reduction of defect density in mismatched SiGe/Si by low temperature Si buffer layers, Submitted to Appl. Phys. Lett. : (1996).

    Google Scholar 

  14. P. G. Snyder, M. C. Rost, G. H. Bu-Abbud, J. A. Woollam and S. A. Alterovitz, Variable angle of incidence spectroscopic ellipsometry: application to GaAs-AlGaAs multiple heterostructures, J. Appl. Phys. 60: 3293 (1986).

    Article  Google Scholar 

  15. G. E. Jellison Jr., T. E. Haynes and H. H. Burke, Optical functions of SiGe alloys determined using spectroscopic ellipsometry, Opt. Mat. 2:105 (1993).

    Article  Google Scholar 

  16. R. T. Carline, C. Pickering, D. J. Robbins, W. Y. Leong, A. D. Pitt and A. G. Cullis, Spectroscopic ellipsometry of SiGe epilayers of arbitrary composition 0<x<0.255, Appl. Phys. Lett. 64: 1114 (1994).

    Article  Google Scholar 

  17. R. M. Sieg, S. A. Alterovitz, E. T. Croke, M. J. Harrell, M. Tanner, K. L. Wang, R. A. Mena and P. G. Young, Characterization of SiGe/Si heterostructures for device applications using spectroscopic ellipsometry, J. Appl. Phys. 74: 586 (1993).

    Article  Google Scholar 

  18. R. M. Sieg, S. A. Alterovitz, E. T. Croke and M. J. Harrell, Ellipsometric study of Sio.sGeo.s/Si strained-layer superlattices, Appl. Phys. Lett. 62: 1626 (1993).

    Article  Google Scholar 

  19. A. R. Heyd, S. A. Alterovitz and E. T. Croke, Characterization of high Ge content SiGe heterostructures and graded alloy layers using spectroscopic ellipsometry, Mat. Res. Symp. Proc. 358: 993 (1995).

    Article  Google Scholar 

  20. C. Pickering, R. T. Carline, D. J. Robbins, W. Y. Leong, D. E. Gray and R. Greef, In-situ dual-wavelength and ex-situ spectroscopic ellipsometry studies of strained SiGe epitaxial layers and multi-quantum well structures, Thin Solid Films 233: 126 (1993).

    Article  Google Scholar 

  21. C. Pickering, R. T. Carline, D. J. Robbins, W. Y. Leong, S. J. Barnett and A. G. Cullis, Spectrocopic ellipsometry characterization of strained and relaxed SiGe epitaxial layers, J. Appl. Phys. 73: 239 (1993).

    Article  Google Scholar 

  22. T. M. Hyltin, Microstrip transmission on semiconductor dielectrics, IEEE Trans. Microwave Theory Tech., Vol. 13, No. 6: 777 (1965).

    Article  Google Scholar 

  23. S. R. Taub and P. G. Young, Attenuation and εeff of coplanar waveguide transmission lines on silicon substrates, Dig. 11 th Benjamin Franklin Symp.: 8 (1993).

    Google Scholar 

  24. N. I. Dib, L. P. B. Katehi, G. E. Ponchak, and R. N. Simons, Theoretical and experimental characterization of coplanar waveguide discontinuities for filter applications, IEEE Trans. Microwave Theory Tech., Vol. 39, No. 5: 873 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ponchak, G.E., Alterovitz, S.A., Katehi, L.P.B., Bhattacharya, P.K. (1997). The Development of Si and SiGe Technologies for Microwave and Millimeter-Wave Integrated Circuits. In: Das, N.K., Bertoni, H.L. (eds) Directions for the Next Generation of MMIC Devices and Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1480-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1480-4_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1482-8

  • Online ISBN: 978-1-4899-1480-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics