Skip to main content

Optical Tweezers: Laser Manipulation of Microparticles

  • Chapter
  • 529 Accesses

Abstract

Although the forces of radiation pressure have been well known to physicists, 1 for a long time it has been difficult to study them in the laboratory due to the presence of temperature gradients causing thermal forces which could obscure the radiation pressure. It has only been since 1970, after the advent of suitable laser sources, that practical applications could be investigated, beginning with the experimental demonstration by A. Ashkin of acceleration and trapping of micron-sized particles using the force of radiation pressure from a cw visible laser.2 Additional steps were made in the following years, 3–6 but a major practical advancement was achieved in 1986 when Ashkin and coworkers demonstrated optical trapping of dielectric particles (in the size range from about 25 nm up to 10 μm) in water solution by a single-beam gradient force radiation-pressure trap. 7 An year later, Ashkin and Dziedzic coined the term «optical tweezers» when reporting the demonstration of the optical trapping and manipulation of individual viruses and bacteria in aqueous solution by laser radiation pressure. They «have used the trap as an optical tweezers for moving live single and multiple bacteria while being viewed under a high-resolution optical microscope».8 During the last decade there has been increased attention to the use of optical tweezers: this occurred mainly in microbiology, but optical tweezers are expected to play an important role in the future development of nanometric-scale technology for manipulation, control and analysis of ultra-small structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. see for instance E.F. Nichols and G.F. Hull, The pressure due to radiation, Phys. Rev. 17, 91 (1903).

    Google Scholar 

  2. A. Ashkin, Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett. 24, 156 (1970).

    Article  Google Scholar 

  3. A. Ashkin, Trapping of atoms by resonance radiation pressure, Phys. Rev. Lett. 40, 729 (1978).

    Article  Google Scholar 

  4. G. Roosen, A theoretical and experimental study of the stable equilibrium positions of spheres levitated by two horizontal laser beams, Opt. Commun. 21, 189 (1977).

    Article  Google Scholar 

  5. A. Ashkin and J.M. Dziedzic, Observation of light scattering from nonspherical particles using optical levitation, Appl. Opt. 19, 660 (1980).

    Article  Google Scholar 

  6. M. Lewittes, S. Arnold and G. Oster, Radiometric lévitation of micron sized spheres, Appl. Phys. Lett. 40, 455 (1982).

    Article  Google Scholar 

  7. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11, 288 (1986).

    Article  Google Scholar 

  8. A. Ashkin, J.M. Dziedzic, Optical trapping and manipulation of viruses and bacteria, Science 235, 1517 (1987).

    Article  Google Scholar 

  9. W.H. Wright, G.J. Sonek, M.W. Berns, Parametric study of the forces on microspheres held by optical tweezers, Applied Optics 33, 1735 (1994).

    Article  Google Scholar 

  10. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura and H. Masuhara, Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water, J. Appl. Phys. 70, 3829 (1991).

    Article  Google Scholar 

  11. H. Feigner, O. Muller, and M. Schliwa, Calibration of light forces in optical tweezers, Appl. Opt. 34, 977 (1995).

    Article  Google Scholar 

  12. T.C. Bakker Schut, E.F. Schipper, B.G. de Grooth, J. Greve, Optical-trapping micromanipulation using 780-nm diode lasers, Optics Letters 18, 447 (1993).

    Article  Google Scholar 

  13. L.P. Ghislain, N.A. Switz, and W.W. Webb, Measurement of small forces using an optical trap, Review of Scientific Instruments 65, 2762 (1994).

    Article  Google Scholar 

  14. S. Sato, M. Ohyumi, H. Shibata, H. Inaba, and Y. Ogawa, Optical trapping of small particles using a 1.3-μm compact InGaAsP diode laser, Opt. Lett. 16, 282 (1991).

    Article  Google Scholar 

  15. R.S. Afzal and E.B. Treacy, Optical tweezers using a diode laser, Rev. Sci. Instr. 63 pt.l, 2157 (1992).

    Article  Google Scholar 

  16. G.J. Escandon, Y. Liu, G.J. Sonek, and M.W. Berns, Beam magnification and the efficiency of optical trapping with 790-nm AlGaAs laser diodes, IEEE Photon. Technol. Lett. 6, 597 (1994).

    Article  Google Scholar 

  17. A. Ashkin, J.M. Dziedzic, and T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature 330, 769 (1987).

    Article  Google Scholar 

  18. W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns, Laser trapping in cell biology, IEEE J. Quantum Electron. 26, 2148 (1990).

    Article  Google Scholar 

  19. I.A. Vorobjev, H. Liang, W.H. Wright, and M.W. Berns, Optical trapping for chromosome manipulation: a wavelength dependence of induced chromosome bridges, Biophys. J. 64, 533 (1993).

    Article  Google Scholar 

  20. G.J. Sonek, W.H. Wright and M.W. Berns, Optical tweezers: getting a handle on the microscopic biological world, LEOS ‘93 Annual Mtg. Conf. Proc. (IEEE, New York, 1993) Cat. No.93CH3297–9, 234.

    Google Scholar 

  21. Y. Liu, D.K. Cheng, G.J. Sonek, M.W. Berns, C.F. Chapman and B.J. Tromberg, Evidence for localized cell heating induced by infrared optical tweezers, Biophys. J. 68, 2137 (1995).

    Article  Google Scholar 

  22. H. Pausewang, Applications and trends of laser technology and photophysics in the field of biological Sciences, Laser u. Optoelektr. 28, 63 (1966).

    Google Scholar 

  23. T.N. Buican, M.J. Smyth, H.A. Crissman, G.C. Salzman, C.C. Stewart, and J.C. Martin, Automated single-cell manipulation and sorting by light trapping, Applied Optics 26, 5311–5316 (1987).

    Article  Google Scholar 

  24. H. Tashiro, M. Uchida and M. Sato-Maeda, Three-dimensional cell manipulator by means of optical trapping for the specification of cell-to-cell adhesion, Opt. Eng. 32 p 2812 (1993).

    Article  Google Scholar 

  25. R. Steubing, S. Cheng, W.H. Wright, Y. Numajiri, and M.W. Berns, Laser-induced cell fusion in combination with optical tweezers: the laser-cell fusion trap, Cytometry 12, 505 (1991).

    Article  Google Scholar 

  26. M.W. Berns, W.H. Wright, B.J. Tromberg, G.A. Profeta, J.J. Andrews, and R.J. Walter, Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle, Proc. Natl. Acad. Sci. USA 86, 4539 (1989).

    Article  Google Scholar 

  27. A. Ashkin and J.M. Dziedzic, Internal cell manipulation using infrared laser traps, Proc. Natl. Acad. Sci. USA 86, 7914 (1989).

    Article  Google Scholar 

  28. H. Liang, W.H. Wright, S. Cheng, W. He, and M.W. Berns, Micromanipulation of mitotic chromosomes in PTK2 cells using laser-induced optical forces (optical tweezers), Exp. Cell Res. 204, 110 (1993).

    Article  Google Scholar 

  29. S.M. Block, D.F. Blair, and H.C. Berg, Compliance of bacterial flagella measured with optical tweezers, Nature 338, 515 (1989).

    Article  Google Scholar 

  30. R.M.P. Doornbos, M. Schaeffer, A.G. Hoekstra, P.M.A. Sloot, B.G. de Grooth, and J. Greve, Elastic light-scattering measurements of single biological cells in an optical trap, Appl. Opt. 35, 729 (1996).

    Article  Google Scholar 

  31. G.J. Sonek, Y. Liu, and R.H. Iturriaga, In situ microparticle analysis of marine phytoplankton cells with infrared laser-based optical tweezers, Appl. Opt. 34, 7731 (1995).

    Article  Google Scholar 

  32. S.M. Block, L.S.B. Goldstein and B.J. Schnapp, Bead movement by single kinesin molecules studied with optical tweezers, Nature 348, 348 (1990).

    Article  Google Scholar 

  33. A. Ashkin, K. Schutze, J.M. Dziedzic, U. Euteneur, and M. Schliwa, Force generation of organelle transport measured in vivo by an infrared laser trap, Nature 348, 346 (1990).

    Article  Google Scholar 

  34. S.C. Kuo and M.P. Sheetz, Force of single kinesin molecules measured with optical tweezers, Science 260, 232 (1993).

    Article  Google Scholar 

  35. K. Svoboda, CF. Schmidt, B.J. Schnapp, and S.M. Block, Direct observation of kinesin stepping by optical trapping interferometry, Nature 365, 721 (1993).

    Article  Google Scholar 

  36. T.T. Perkins, D.E. Smith, R.G. Larson, and S. Chu, Stretching of a single tethered polymer in a uniform flow, Science 268, 83 (1995).

    Article  Google Scholar 

  37. S.B. Smith, Y. Cui, and C. Bustamante, Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules, Science 271, 795 (1996).

    Article  Google Scholar 

  38. H. Misawa, K. Sasaki, M. Koshioka, N. Kitamura, and H. Masuhara, Multibeam laser manipulation and fixation of microparticles, Appl. Phys. Lett. 60, 310 (1992).

    Article  Google Scholar 

  39. M. Miwa, H. Misawa, T. Araki and T. Yoshimura, Laser manipulation technique and its role in study of micromachine, Proc. 7 th Intl. Symp. on Microsystems, Intelligent Materials and Robots, J. Tani and M. Esashi, Eds. (Tohoku Univ, Sendai, 1996) 67.

    Google Scholar 

  40. E. Higurashi, O. Ohguchi, H. Ukita and T. Tamamura, Rotational manipulation of artificial micro-objects based on the radiation pressure exerted on their internal sides, Proc. 7 th Intl. Symp. on Microsystems, Intelligent Materials and Robots, J. Tani and M. Esashi, Eds. (Tohoku Univ, Sendai, 1996) 63.

    Google Scholar 

  41. S. Kawata and T. Sugiura, Movement of micrometer-sized particles in the evanescent field of a laser beam, Opt. Lett. 17, 772 (1992).

    Article  Google Scholar 

  42. S. Kawata and T. Tani, Optically driven Mie particles in an evanescent field along a channeled waveguide, Opt. Lett. 21, 1768 (1996).

    Article  Google Scholar 

  43. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining, Appl. Phys. Lett. 64, 2209 (1994).

    Article  Google Scholar 

  44. S. Stenholm, The semiclassical theory of laser cooling, Rev. Mod. Phys. 58, 699 (1986).

    Article  Google Scholar 

  45. S. Chu, Laser manipulation of atoms and particles, Science 253, 861 (1991).

    Article  Google Scholar 

  46. L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo and F. Strumia, Eds., Light induced kinetic effects (ETS Editrice, Pisa, 1991).

    Google Scholar 

  47. M.D. Hoogerland, H.F.P. Debie, H.C.W. Beijerinck, E.J.D. Vredenbregt, K.A.H. Vanleeuwen, P. Vanderstraten and H.J. Metcalf, Force, diffusion, and channeling in sub-Doppler laser cooling, Physical Review A 54, 32064 (1996).

    Article  Google Scholar 

  48. A. Constable, J. Kim, J. Mervis, F. Zarinetchi, and M. Prentiss, Demonstration of a fiber-optical light-force trap, Opt. Lett. 18, 1867 (1993).

    Article  Google Scholar 

  49. E.R. Lyons and G.J. Sonek, Confinement and bistability in a tapered hemispherically lensed optical fiber trap, Appl. Phys. Lett. 66, 1584 (1995).

    Article  Google Scholar 

  50. S. Sato and H. Inaba, Observation of second harmonic generation from optically trapped microscopic LiNbO3 particle using Nd:YAG laser, Electron. Lett. 28, 286 (1992).

    Article  Google Scholar 

  51. S. Sato and H. Inaba, Second-harmonic and sum-frequency generation from optically trapped KTiOPO4 microscopic particles by use of Nd: YAG and Ti: A12O3 lasers, Opt. Lett. 19, 927 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Righini, G.C. (1997). Optical Tweezers: Laser Manipulation of Microparticles. In: Martellucci, S., Chester, A.N. (eds) Diffractive Optics and Optical Microsystems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1474-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1474-3_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1476-7

  • Online ISBN: 978-1-4899-1474-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics