Skip to main content

Waveguides in LiNbO3 for Optical Sensors: Characterisation by Cerenkov Effect

  • Chapter
Diffractive Optics and Optical Microsystems
  • 525 Accesses

Abstract

Sensors and microsystems are likely to become a major application for integrated optic technologies, second only to communications applications. As compared with the latter, this field covers much more diverse needs and it may involve mass production of consumer goods. Despite their great potential, and although a large number of devices have been studied and tested, only a few of them have led to commercially available products. Actually, except for very specific cases, integrated optic sensors have to compete with well developed and qualified non-optical (e.g. microelectronic) devices. Thus, novel optical systems have to meet very high standards in terms of cost-to-performance ratio and reliability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.J. Rogers, Optical-fiber sensors, in: Sensors — a Comprehensive Survey, W. Göpel, J. Hesse and J.N. Zemel, ed., vol.6: Optical Sensors, E.Wagner, R. Dändliker and K. Spenner, ed., p. 355, VCH, Weinheim (1992).

    Google Scholar 

  2. A. Brandenburg, V. Hinkov and W. Konz, Integrated optic sensors, in: Sensors — a Comprehensive Survey, W. Göpel, J. Hesse and J.N. Zemel, ed., vol.6: Optical Sensors, E.Wagner, R. Dändliker and K. Spenner, ed., p. 399, VCH, Weinheim (1992).

    Google Scholar 

  3. O. Parriaux, Integrated optics sensors, in: Advances in Integrated Optics, S. Martellucci, A.N. Chester and M. Bertolotti, ed., p. 227, Plenum Press, New York (1994).

    Chapter  Google Scholar 

  4. W. Lukosz, Integrated optical chemical and direct biochemical sensors, Sens. Actuators B 29:37 (1995).

    Article  Google Scholar 

  5. S.-W. Kang, K. Sasaki and H. Minamitami, Sensitivity analysis of a thin-film optical waveguide biochemical sensor using evanescent field absorption, Applied Optics 32:3544 (1993).

    Article  Google Scholar 

  6. W. Lukosz and K. Tiefenthaler, Sensitivity of integrated optical grating and prism couplers as (bio)chemical sensors, Sens. Actuators 15:273 (1988).

    Article  Google Scholar 

  7. R. Reuter and H. Franke, Monitoring humidity by polymide lightguides, Appl. Phys. Lett 52:778 (1988).

    Article  Google Scholar 

  8. H. Franke, D. Wagner, T. Kleckers, R. Reuter, H.V. Rohitkumar and B.A. Blech, Measuring humidity with planar polyimide light guides, Appl Opt. 32:2927 (1993).

    Article  Google Scholar 

  9. Y. Zhou, J.V. Magill, M.R. De La Rue, P.J.R. Laybourn and W. Cushlay, Evanescent fluorescence immunoassays performed with a disposable ion-exchanged patterned waveguide, Sens. Actuators B 11:245(1993).

    Article  Google Scholar 

  10. D. Clerc and W. Lukosz, Integrated optical output grating coupler as refractometer and (bio-) chemical sensor, Sens. Actuators B 11:461 (1993).

    Article  Google Scholar 

  11. K. Fischer, D. Zurhelle, R. Hoffmann, F. Wasse and J. Muller, Fully integrated optical force and pressure sensor based on SiON layers, in: Proc. of ECIO 93, P. Roth, ed., p. 12–7, CSEM, Neuchâtel, CH, April 18–22 (1993).

    Google Scholar 

  12. S. Ura, M. Shinouara, T. Suhara and H. Nishihara, Integrated-optic grating-scale-displacement sensor using linearly focusing grating couplers, IEEE Photonics Technology Letters 2:239 (1994).

    Article  Google Scholar 

  13. T. Suhara, T. Taniguchi, M. Umegaki, H. Nishihara, T. Hirata, S. Iio and M. Suehiro, Monolithic integrated-optic position/displacement sensor using waveguide gratings and QW-DFB laser, IEEE Photonics Technology Letters 10:1195 (1995).

    Article  Google Scholar 

  14. C.H. Bulmer, Sensitive, highly linear lithium niobate interferometers for electromagnetic field sensing, Appl. Phys. Lett. 53:2368 (1988).

    Article  Google Scholar 

  15. S. Cucurachi, A. D’Orazio, M. De Sario, V. Petruzzelli and F. Prudenzano, Design of a Ti:LiNbO3 sensor for the simultaneous measurement of stress and temperature, in: SPIE, Measurement Technology and Intelligent Instruments, Vol.2101, p. 340 (1993).

    Chapter  Google Scholar 

  16. A. D’Alessandro, M. De Sario, A. D’Orazio and V. Petruzzelli, Design criteria of an integrated optics microdisplacement sensor, in: SPIE, Optical Testing and Metrology, Vol. 1332, p.554 (1990).

    Google Scholar 

  17. J. Bauer, E. Dammann and E. Fritsch, Integrated optical 3-beam interferometer for distance measurements, in: Proc. of ECIO 93, P. Roth, ed., p. 12–25, CSEM, Neuchâtel, CH, April 18–22 (1993).

    Google Scholar 

  18. E. Frlan, J.S. Wight, S. Janz, H. Dai, F. Chatenoud, M. Buchanan and R. Normandin, High resolution surface-emitting spectrometer and deformation sensors with nonlinear waveguides, Optics Letters 19:1657(1994).

    Article  Google Scholar 

  19. P.K. Tien, R. Ulrich and R.J. Martin, Optical second harmonic generation in form of coherent Cerenkov radiation from a thin film waveguide, Appl. Phys. Lett. 17:447 (1970).

    Article  Google Scholar 

  20. N.A. Sanford and W.C. Robinson, Direct measurement of effective indices of guided modes in LiNb03 waveguides using the Cerenkov second harmonic, Opt. Lett. 12:445 (1987).

    Article  Google Scholar 

  21. M.J. Li, M. De Micheli, Q. He and D.B. Ostrowsky, Cerenkov configuration second harmonic generation in proton-exchanged lithium niobate guides, IEEE J. Quantum Electr. 36:1384 (1990).

    Article  Google Scholar 

  22. M.P. De Micheli, Second harmonic generation in Cerenkov configuration, in: Guided Wave Nonlinear Optics, D.B Ostrowsky and R. Reinisch, ed., NATO-ASI Series, p. 147, Kluwer Academic Publishers, Boston-London (1992).

    Chapter  Google Scholar 

  23. R.Ramponi, V.Russo, V.Magni, L.Palchetti, R.Osellame, M.Zavelani-Rossi, Waveguides in Ti:LiNbO3 for second harmonic generation: design and experimental tests, in: SPIE vol. 2954 (1996) in press.

    Google Scholar 

  24. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi and L. Rivière, Wavelength dispersion of Ti induced refractive index change in LiNb03 as a function of diffusion parameters, J. Lightwave Technol., LT-5:700(1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramponi, R. (1997). Waveguides in LiNbO3 for Optical Sensors: Characterisation by Cerenkov Effect. In: Martellucci, S., Chester, A.N. (eds) Diffractive Optics and Optical Microsystems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1474-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1474-3_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1476-7

  • Online ISBN: 978-1-4899-1474-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics