Skip to main content

Radially Gradient-Index Lenses: Applications to Fiber Optic Sensors

  • Chapter
Diffractive Optics and Optical Microsystems

Abstract

Monomode and multimode optical fibers are characterized by an intrinsic numerical aperture. Consequently, when designing fiber optic probes for sensing applications, some optics must be used to convert the fibers’ divergent beam into a collimated one, in order to minimize insertion losses. The radially-graded refractive-index (GRIN) rod-lenses are particularly suitable for use in fiber optic sensors. In fact, the cylindrical shape of the GRIN lens, similar to the fiber shape, makes possible a compact, stable and rugged fiber-to-GRIN connection. GRIN-rod lenses have planar input and output faces, enabling the fiber to be glued directly onto the lens without optical paths in air, thus reducing cross-talk effects and pollution problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.W. Marchand, Gradient Index Optics, 1978, Academic Press, New York

    Google Scholar 

  2. K. Iga, Theory for graded-index imaging, Appl. Opt. 19:1039 (1980).

    Article  Google Scholar 

  3. A. Sharma, D.V. Kumar, and A.K. Ghatak, Tracing rays through graded-index media: a new method, Appl Opt. 21:984 (1982).

    Article  Google Scholar 

  4. A. Sharma, Computing optical path length in gradient-index media: a fast and accurate method, Appl. Opt. 24:4367 (1985).

    Article  Google Scholar 

  5. C. Gómez-Reino, E. Larrea, M.V. Pérez, and J.M. Cuadrado, Imaging, transforming, and modal propagation parabolic gradient-index rod, Appl. Opt. 24:4379 (1985).

    Article  Google Scholar 

  6. J.R. Flores, C. Gómez-Reino, E. Acosta, and J. Linares, Geometrical optics of gradient index lenses, Opt. Eng. 28:1173(1989).

    Article  Google Scholar 

  7. Nippon Sheet Glass Co. Ltd., Fiber Optics Division, Sumitomo Fudosan Shiba Bldg., 1–11–11, Shiba, Minato-ku, Tokyo 105, Japan.

    Google Scholar 

  8. Nippon Electric Glass Co. Ltd., Miyahara 4-chome, Yodogawa-ku, Osaka 532, Japan.

    Google Scholar 

  9. B. Culshaw, and J. Dakin Eds., Optical Fiber Sensors — vol. 1: Principles and Components — vol 2: Systems and Applications , 1988, Artech House Pbl

    Google Scholar 

  10. See Ref. 9, volume 2, chapter 17 Physical and Chemical Sensors for Process Control, pp. 653–699.

    Google Scholar 

  11. S.D. Cusworth, J.M. Senior, A reflective optical sensing technique employing a GRIN rod lens, J. Phys. E: Sci. Instrum. 20:102 (1987).

    Article  Google Scholar 

  12. P.J. Murphy, and T.P. Coursolle, Fiber optic displacement sensor employing a graded index lens, Appl. Opt. 29:544 (1990).

    Article  Google Scholar 

  13. M. Brenci, G. Conforti, A. Mencaglia, A.G. Mignani, and A.M. Scheggi, Fibre-optic position sensor array, Int. J. Optoelectr. 3:473 (1988).

    Google Scholar 

  14. G. Conforti, M. Brenci, A. Mencaglia, and A.G. Mignani, Fiber optic vibration sensor for remote monitoring in high power electric machines, Appl. Opt. 28:5158 (1989).

    Article  Google Scholar 

  15. M. Brenci, A. Mencaglia, and A.G. Mignani, Fiber-optic sensor for simultaneous and independent measurement of vibration and temperature in electric generators, Appl. Opt. 30:2947 (1991).

    Article  Google Scholar 

  16. B. Chu, Laser Light Scattering, 1991, Academic Press, New York.

    Google Scholar 

  17. M. Brenci, D. Guzzi, A. Mencaglia, A.G. Mignani, and M. Pieraccini, Quasi-monodisperse particulate characterization with optical fibers and a three-wavelength scattering technique, Sens. Act. B 29:115 (1995).

    Article  Google Scholar 

  18. M. Brenci, D. Guzzi, A. Mencaglia, A.G. Mignani, and M. Pieraccini, An optical-fiber sensor for the measurement of the size and density of monodisperse particulates, Sens. Act. A 48:23 (1995).

    Article  Google Scholar 

  19. M. Brenci, D. Guzzi, A. Mencaglia, and A.G. Mignani, Fibre-optic smoke sensor, Sens. Act. B 7:780 (1992).

    Article  Google Scholar 

  20. A.J. Macfayden, and B.R. Jennings, Fibre-optic systems for dynamic light scattering-a review, Opt. Las. Tech. 22:175 (1990).

    Article  Google Scholar 

  21. H.S. Dhadwal, and R.R. Ansari, Multiple fiber optic probe for several sensing applications, SPIE Proc. Fiber Optic and Laser Sensors IX, 1584:262 (1991).

    Article  Google Scholar 

  22. M. Brenci, A. Mencaglia, A.G. Mignani, and M. Pieraccini, “A circular-array optical fiber probe for backscattering photon correlation spectroscopy measurements”, Appl. Opt. 35 :6775 (1996).

    Article  Google Scholar 

  23. D.A. Landis, C.J. Seliskar, and W.R. Heineman, Fiber-optic-graded-indes-lens absorbance sensor with wavelength-scanning capability, Appl. Opt. 33:3432 (1994).

    Article  Google Scholar 

  24. G. Conforti and M. Brenci, Power loss in optical-fiber graded-index-rod components, Opt. Lett.13:59 (1988).

    Article  Google Scholar 

  25. G. Conforti, M. Brenci, A. Mencaglia, and A.G. Mignani, Fiber-optic thermometric probe utilizing GRIN lenses, Appl. Opt. 28:577 (1989).

    Article  Google Scholar 

  26. A.G. Mignani, M. Brenci, and G. Conforti, Nearly autofocusing cavity for fiberoptic sensor probes, SPIE Proc. Micro-optics, 1014:42 (1988).

    Article  Google Scholar 

  27. S.O. Ryding, Environmental Management Handbook, 1992, IOS Press.

    Google Scholar 

  28. C.P. Straub, Practical Handbook of Environmental Control, 1990, CRC Press.

    Google Scholar 

  29. D.E. Cooper, and R.U. Martinelli, Near-infrared diode lasers monitor molecular species’, Laser Focus World 28:133(1992).

    Google Scholar 

  30. R.U. Martinelli, R.J. Menna, D.E. Cooper, C.B. Carlisle, and H. Riris, Near-infrared InGaAs/InP distributed-feedback lasers for spectroscopic applications, SPIE Proc. Laser Diode Technology and Applications VI, 2148:292 (1994).

    Article  Google Scholar 

  31. D.A. Landis, and C.J. Seliskar, Fiber-optic/GRIN lens coules for use in chemical spectroscopy, Appl. Spectr. 49:547 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mignani, A.G., Mencaglia, A., Brenci, M., Scheggi, A. (1997). Radially Gradient-Index Lenses: Applications to Fiber Optic Sensors. In: Martellucci, S., Chester, A.N. (eds) Diffractive Optics and Optical Microsystems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1474-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1474-3_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1476-7

  • Online ISBN: 978-1-4899-1474-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics