Skip to main content

Fiber Bragg Gratings as Temperature and Strain Sensors

  • Chapter
Diffractive Optics and Optical Microsystems
  • 530 Accesses

Abstract

A fiber Bragg grating (FBG) consists of a periodic modification in the refractive core index along a short section of a germanosilicate optical fiber. Photorefractive intracore fiber Bragg gratings are attracting intense interest because of their wide field of application: they can be used in telecommunication systems 1 – 4 for wavelength division multiplexing (WDM) devices, wavelength-selective couplers, switches, integrated laser cavities (where a pair of gratings acts as partial or total narrow-band reflecting mirrors), dispersion compensators, as well as in sensing systems,5 either as single element or in a quasi-distributed array. Due to their compatibility with the transmission medium and the relative ease of their fabrication, the use of FBG as sensors, together with existing fiber technology, opens up a whole range of new opportunities for novel applications in areas such as smart structures and materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Kashyap, Optical fibre Bragg gratings for applications in telecommunications, Proc. 21th Eur. Conf. on Opt. Comm. (ECOC ’95 — Brussels), 23 (1995)

    Google Scholar 

  2. P A.L. Mason, J.A.J. Fells, R.V. Penty and I.H. White, Optical communication system performance using fibre Bragg grating dispersion compensators, Proc. 20th Eur. Conf. on Opt. Comm. (ECOC ’94 — Firenze), 435 (1994)

    Google Scholar 

  3. F. Ouellette, P.A. Krug, T. Stephens, G. Dhosi and B. Eggleton, Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings, Electron. Lett., 31, 11, 899 (1995)

    Article  Google Scholar 

  4. P.A. Morton, V. Mizrahi, S.G. Kosinski, L.F. Mollenauer, T. Tanbun-Ek, R.A. Logan, D.L. Coblentz, A.M. Sergent and K.W. Wetch, Hibrid soliton pulse source with fibre external cavity and Bragg reflector, Electron. Lett., 28, 6, 561 (1992)

    Article  Google Scholar 

  5. G.P. Brady, S. Hope, A.B. Lobo Ribeiro, D.J. Webb and L. Reekie, Bragg grating temterature and strain sensors, 10th Int. Conference on Optical Fibre Sensors — Glasgow, 510 (1994)

    Google Scholar 

  6. A.D. Kersey, T.A. Berkoff and W.W. Morey, Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter, Opt. Lett., 18, 16, 1370 (1993)

    Article  Google Scholar 

  7. M. Josephine Yuen, Ultraviolet absorption studies of germanium silicate glasses, Appl. Optics, Vol. 21, No.1, 136(1982)

    Article  Google Scholar 

  8. T.E. Tsai, C.G. Askins and E.J. Friebele, Photoinduced grating and intensity dependence of defect generation in Ge-doped silica optical fiber, Appl. Phys. Lett., 61, 4, 390 (1992)

    Article  Google Scholar 

  9. D Marcuse, Theory of dielectric optical waveguide (Academic Press, New York) (1974)

    Google Scholar 

  10. P.St J. Russel, J-L. Archambault and L. Reekie, Fibre gratings, Physics World, 41 (1993)

    Google Scholar 

  11. D.K.W. Lam and B.K. Garside, Characterization of single-mode optical fiber filters, Appl. Optics, 20, 3, 440(1981)

    Article  Google Scholar 

  12. W.W. Morey, G. Meltz and W.H. Glenn, High temperature capabilities and limitations of fiber grating sensors, Proc. SPIE, Vol. 1169, Fiber Optic and Laser Sensors VII, 98 (1989)

    Article  Google Scholar 

  13. C.G. Askin, M.A. Putnam, G.M. Williams and E.J. Friebele, Stepped-wavelength optical-fiber Bragg grating arrays fabricated in line on a draw tower, Optics Lett., 19, 2, 147 (1994)

    Article  Google Scholar 

  14. K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson and J. Albert, Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask, Appl. Phys. Lett., 62, 10, 1035 (1993)

    Article  Google Scholar 

  15. G.W. Goodman, Introduction to Fourier Optics, (Mc Graw-Hill, San Francisco) (1968)

    Google Scholar 

  16. R.J. Campbell and R. Kashyap, The properties and applications of photosensitive germanosilicate fibre, Int. J. of Optoelectronics, 9, 1, 33 (1994)

    Google Scholar 

  17. M.G. Xu, L. Reekie, Y.T. Chow and J.P. Dakin, Optical in-fibre grating high pressure sensor. Electron. Lett., 29, 398 (1993)

    Article  Google Scholar 

  18. M.G. Xu, J.L. Archambault, L. Reekie and J.P. Dakin, Simultaneous measurement of strain and temperature using fibre grating sensors, 10th Int Conference on Optical Fibre Sensors — Glasgow, 191 (1994)

    Google Scholar 

  19. D.A. Flavin, R. McBride and J.D.C. Jones, Temperature-insensitive interferometric measurement of strain using grating-coupled LED sources, 10th Int Conference on Optical Fibre Sensors — Glasgow, 195 (1994)

    Google Scholar 

  20. K. Kalli, G. Brady, D.J. Webb, L. Reekie, J.L. Archambault and D.A. Jackson, Possible approach for the simultaneous measurement of temperature and strain via first and second order diffraction from Bragg grating sensors, 10th Int Conference on Optical Fibre Sensors — Glasgow (1994)

    Google Scholar 

  21. M.G. Xu, L. Dong, L. Reekie, J. A. Tucknott and J.L. Cruz, Temperature-independent strain sensor using a chirped Bragg grating in a tapered optical fibre, Electron. Lett., 31, 10, 823 (1994)

    Article  Google Scholar 

  22. E.J. Friebele, C.G. Askins, M.A. Putnam, J. Florio, A.A. Fosha, R.P. Donti and C.D. Mosley, Distributed strain sensing with fiber Bragg grating arrays embedded in CRTM composites, 2nd European Conf on Smart Structures and Materials — Glasgow, 338 (1994)

    Google Scholar 

  23. M.A. Davis, D.G. Bellemore and A.D. Kersey, Structural strain mapping using a wavelength/time division addressed fiber Bragg grating array, 2nd European Conf on Smart Structures and Materials — Glasgow, 342 (1994)

    Google Scholar 

  24. R.M. Measures, T. Alavie, R. Maaskant, S. Huang and M. LeBlanc, Bragg grating fiber optic sensing for bridges and other structures, 2nd European Conf. on Smart Structures and Materials — Glasgow, 162 (1994)

    Google Scholar 

  25. P.M. Nellen, R. Bronnimann and U. Sennhauser, Applications of distributed fiber Bragg grating sensors in civil engineering, SPIE Vol. 2507, 14 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Falciai, R., Fontana, R., Schena, A., Scheggi, A.M. (1997). Fiber Bragg Gratings as Temperature and Strain Sensors. In: Martellucci, S., Chester, A.N. (eds) Diffractive Optics and Optical Microsystems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1474-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1474-3_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1476-7

  • Online ISBN: 978-1-4899-1474-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics