Skip to main content

Taurine as an Organic Osmolyte in the Intact Brain: Immunocytochemical and Biochemical Studies

  • Chapter
Taurine in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 359))

Abstract

The brain must possess mechanisms that enables it to adjust to changes in plasma osmolality. Such changes can be quite pronounced in a number of conditions, including diabetes and certain renal and gastrointestinal disorders (31), and would have had deleterious consequences more often were it not for the brain’s capacity to counteract the accompanying volume changes. It is clear that the brain responds to osmotic stress by regulating its electrolyte contents (1). However, as large fluctuations in intracellular electrolyte concentrations may interfere with cell function in various ways, the ability to use nonperturbing, organic osmolytes would represent a definite advantage. Several organic compounds show a decreased concentration in brain following experimentally induced hypoosmolality, suggesting that they are involved in osmoregulation (13). The largest concentration changes are exhibited by amino acids such as taurine, glutamate, and glutamine. But other compounds including creatine also show a conspicuous decrease. There is also evidence that the major organic osmolytes of the kidney are present in the brain and act in a similar capacity there (35).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballanyi, K., and Grafe, P., 1988, Cell volume regulation in the nervous system, Renal Physiol. Biochem. 3–5:142–157.

    Google Scholar 

  2. Baxter, C.F., Baldwin, R.A., Lu, P., Imaki, H., and Sturman, J.A., 1993, Taurine in toad brain and blood under different conditions of osmolality: an immunocytochemical study, Neurochem. Res. 18:425–435.

    Article  CAS  Google Scholar 

  3. Campistron, G., Geffard, M., and Buijs, R.M., 1986, Immunological approach to the detection of taurine and immunocytochemical results, J. Neurochem. 46:862–868.

    Article  CAS  Google Scholar 

  4. Erecinska, M., and Silver, I.A., 1990, Metabolism and role of glutamate in mammalian brain, Prog.Neurobiol. 35:245–296.

    Article  CAS  Google Scholar 

  5. Fugelli, K., and Thoroed, S.M., 1986, Taurine transport associated with cell volume regulation in flounder erythrocytes under anisosmotic conditions, J. Physiol. 374:245–261.

    CAS  Google Scholar 

  6. Garcia, J.J., Sánches Olea, R., and Pasantes-Morales, H., 1991, Taurine release associated to volume regulation in rabbit lymphocytes, J. Cell. Biochem. 45:207–212.

    Article  Google Scholar 

  7. Huxtable, R.J., 1992, The physiological actions of taurine, Physiol. Rev. 72:101–163.

    CAS  Google Scholar 

  8. Ida, S., Kuriyama, K., Tomida, Y., and Kimura, H., 1987, Antisera against taurine: Quantitative characterization of the antibody specificity and its application to immunohistochemical study in the rat brain, J. Neurosci. Res. 18:626–631.

    Article  CAS  Google Scholar 

  9. Jhiang, S.M., Fithian, L., Smanik, P., McGill, J., Tong, Q., and Mazzaferri, E.L., 1993, Cloning of the human taurine transporter and characterization of taurine uptake in thyroid cells, Fed. Eur. Bio. Soc. 318: 139–144.

    Article  CAS  Google Scholar 

  10. Kimelberg, H.K., Goderie, S.K., Higman, S., Pang, S., and Waniewski, R.A., 1990, Swelling-induced release of glutamate, aspartate and taurine from astrocyte cultures, J. Neurosci. 10:1583–1591.

    CAS  Google Scholar 

  11. Lange, R., 1964, The osmotic adjustment in the echinoderm, Strongylocentrotus droebachiensis. Comp. Biochem, Physiol. 13:205–216.

    Article  CAS  Google Scholar 

  12. Law, R.O., 1989, Effects of pregnancy on the contents of water, taurine, and total amino nitrogen in rat cerebral cortex, J. Neurochem. 53:300–302.

    Article  CAS  Google Scholar 

  13. Law, R.O., 1991, Amino acids as volume-regulatory osmolytes in mammalian cells, Comp. Biochem. Physiol. 99:263–277.

    Article  CAS  Google Scholar 

  14. Lehmann, A., 1989, Effects of microdialysis-perfusion with anisoosmotic media on extracellular amino acids in the rat hippocampus and skeletal muscle, J. Neurochem. 53:525–535.

    Article  CAS  Google Scholar 

  15. Lehmann, A., Carlström, C., Nagelhus, E.A., and Ottersen, O.P., 1991, Elevation of taurine in hippocampal extracellular fluid and cerebrospinal fluid of acutely hypoosmotic rats: contribution by influx from blood? J. Neurochem. 56:690–697.

    Article  CAS  Google Scholar 

  16. Liu, Q.-R., Lopez-Corcuera, B., Nelson, H., Mandiyan, S., and Nelson, N., 1992, Cloning and expression of a cDNA encoding the transporter of taurine and β-alanine in mouse brain, Proc. Natl. Acad. Sci. USA 89:12145–12149.

    Article  CAS  Google Scholar 

  17. Madsen, S., 1990, Immunocytochemical visualization of taurine-containing and taurine-synthesizing cells, in: “Taurine: Functional Neurochemistry, Physiology, and Cardiology”, Martin, D.L., Shain, W., and Martin del Rio, R., eds., Wiley-Liss, New York, pp. 21–28.

    Google Scholar 

  18. Madsen, S., Ottersen, O.P., and Storm-Mathisen, J., 1985, Immunocytochemical visualization of taurine: neuronal localization in the rat cerebellum, Neurosci. Lett. 60:255–260.

    Article  CAS  Google Scholar 

  19. Magnusson, K.R., Madl, J.E., Clements, J.R., Wu, J.-Y., Larson, A.A., and Beitz, A.J., 1988, Colocalization of taurine-and sulfinic acid decarboxylase-like immunoreactivity in the cerebellum of the rat with monoclonal antibodies against taurine, J. Neurosci. 8:4551–4564.

    CAS  Google Scholar 

  20. Martin, D.L., Madelian, V., Seligmann, B. and Shain, W., 1990, The role of osmotic pressure and membrane potential in K+-stimulated taurine release from cultured astrocytes and LRM55 cells, J. Neurosci. 10:571–577.

    CAS  Google Scholar 

  21. Nagelhus, E.A., Lehmann, A., and Ottersen, O.P., 1993, Neuronal-glial exchange of taurine during hypo-osmotic stress: a combined immunocytochemical and biochemical analysis in rat cerebellar cortex, Neuroscience 54:615–631.

    Article  CAS  Google Scholar 

  22. Ottersen, O.P., 1988, Quantitative assessment of taurine-like immunoreactivity in different cell types and processes in rat cerebellum: an electronmicroscopic study based on a postembedding immunogold labelling procedure, Anat. Embryol. 178:407–421.

    Article  CAS  Google Scholar 

  23. Pasantes-Morales, H., and Schousboe, A., 1988, Volume regulation in astrocytes: A role for taurine as an osmoeffector, J. Neurosci. Res. 20:505–509.

    Article  CAS  Google Scholar 

  24. Pasantes-Morales, H., and Schousboe, A., 1989, Release of taurine from astrocytes during potassiumevoked swelling, Glia 2:45–50.

    Article  CAS  Google Scholar 

  25. Pasantes-Morales, H., Morán, J., and Schousboe, A., 1990, Volume-sensitive release of taurine from cultured astrocytes: properties and mechanism, Glia 3:427–432.

    Article  CAS  Google Scholar 

  26. Puka, M., Sundell, K., Lazarewicz, J.W., and Lehmann, A., 1991, Species differences in cerebral taurine concentrations correlate with brain water content, Brain Res. 548:267–272.

    Article  CAS  Google Scholar 

  27. Sánches-Olea, R., Morán, J., Schousboe, A., and Pasantes-Morales, H., 1991, Hyposmolarity-activated fluxes of taurine in astrocytes are mediated by diffusion, Neurosci. Lett. 130:233–236.

    Article  Google Scholar 

  28. Schousboe, A., Sánchez Olea, R., Morán, and Pasantes-Morales, H., 1991, Hyposmolarity-induced taurine release in cerebellar granule cells is associated with diffusion and not with high-affinity transport, J. Neurosci. Res. 30:661–665.

    Article  CAS  Google Scholar 

  29. Smith, K.E., Borden, L.A., Wang, C.-H. D., Hartig, P.R., Branchek, T.A., and Weinshank, R.L., 1992, Cloning and expression of a high affinity taurine transporter from rat brain, Molec. Pharm. 42:563–569.

    CAS  Google Scholar 

  30. Solis, J.M., Herranz, A.S., Herreras, O., Lerma, J. and Martin del Rio, R., 1988, Does taurine act as an osmoregulatory substance in the rat brain? Neurosci. Lett. 91:53–58.

    Article  CAS  Google Scholar 

  31. Strange, K., 1992, Regulation of solute and water balance and cell volume in the central nervous system, J. Am. Soc. Nephrol. 3:12–27.

    CAS  Google Scholar 

  32. Tigges, G.A., Philibert, R.A., and Dutton, G.R., 1990, K+-and temperature-evoked taurine efflux from hypothalamic astrocytes, Neurosci. Lett. 119:23–26.

    Article  CAS  Google Scholar 

  33. Trachtman, H., del Pizzo, R., and Sturman, J.A., 1990, Taurine and Osmoregulation. III. Taurine deficiency protects against cerebral edema during acute hyponatremia, Pediatr. Res. 27: 85–88.

    Article  CAS  Google Scholar 

  34. van Gelder, 1990, Neuronal discharge hypersynchrony and the intracranial water balance in relation to glutamatic acid and taurine redistribution: Migraine and epilepsy, in: “Taurine: Functional Neurochemistry, Physiology, and Cardiology”, Pasantes-Morales, H., Martin, D.L., Shain, W., and Martin del Rio, R., eds., Wiley-Liss, New York, pp. 1–20.

    Google Scholar 

  35. Verbalis, J.G., and Gullans, S.R., 1991, Hyponatremia causes large sustained reductions in brain content of multiple organic osmolytes in rats, Brain Res. 567:274–282.

    Article  CAS  Google Scholar 

  36. Wade, J.V., Olson, J.P., Samson, F.E., Nelson, S.R., and Pazdernik, T.L., 1988, A possible role for taurine in osmoregulation within the brain, J. Neurochem. 51:740–745.

    Article  CAS  Google Scholar 

  37. Yoshida, M., Karasawa, N., Ito, M., Sakai, M., and Nagatsu, I., 1986, Demonstration of taurine-like immunoreactive structures in the rat brain, Neurosci. Res. 3:356–363.

    Article  CAS  Google Scholar 

  38. Zhang, N., and Ottersen, O.P., 1992, Differential cellular distribution of two sulphur-containing amino acids in rat cerebellum, Exp. Brain Res. 90:11–20.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nagelhus, E.A., Amiry-Moghaddam, M., Lehmann, A., Ottersen, O.P. (1994). Taurine as an Organic Osmolyte in the Intact Brain: Immunocytochemical and Biochemical Studies. In: Huxtable, R.J., Michalk, D. (eds) Taurine in Health and Disease. Advances in Experimental Medicine and Biology, vol 359. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1471-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1471-2_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1473-6

  • Online ISBN: 978-1-4899-1471-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics