Skip to main content

Relations of Taurine Release and Influx to Cell Volumes in Cerebral Cortical Slices

  • Chapter
Taurine in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 359))

Abstract

Taurine has been assigned two types of putative physiological functions in the central nervous system. On the one hand, taurine has been shown to cause hyperpolarization, to increase membrane chloride conductance and to inhibit neuronal activity (14). These effects have initiated hypotheses of taurine acting as an inhibitory neurotransmitter (2) or — more likely — a neuromodulator (15). On the other hand, already a number of years ago taurine was recognized as an osmoregulator in marine animals (27), and recently it has been strongly advocated to possess the same role also in the brains of terrestrial animals, including mammals and man (20, 32, 33). According to this thinking the stimulus-evoked release of taurine from nervous tissue is only a consequence of excitation-coupled cell swelling (25).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baxter, CF., Baldwin, R.A., Lu, P., Imaki, H., and Sturman, J.A., 1993, Taurine in toad brain and blood under different conditions of osmolality-an immunohistochemical study, Neurochem. Res., 18: 425–435.

    Article  CAS  Google Scholar 

  2. Hanretta, A.T., and Lombardini, J.B., 1987, Is taurine a hypothalamic neurotransmitter?: a model of the differential uptake and compartmentalization of taurine by by neuronal and glial cell particles from the rat hypothalamus, Brain Res. Rev., 12: 167–201.

    Article  CAS  Google Scholar 

  3. Holopainen, I., Kontro, P., and Oja, S.S., 1984, Taurine and hypotaurine transport in neuroblastoma cells: effects of cations, Neurochem. Int., 6: 217–222.

    Article  CAS  Google Scholar 

  4. Huxtable, R.J., 1989, Taurine in the central nervous system and the mammalian actions of taurine, Prog. Neurobiol., 32: 471–533.

    Article  CAS  Google Scholar 

  5. Kimelberg, H.K., Goderie, S.K., Higman, S., Pang, S., and Waniewski, R.A., 1990, Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures, J. Neurosci., 10: 1583–1591.

    CAS  Google Scholar 

  6. Kontro, P., 1982, Effects of cations on taurine, hypotaurine and GABA uptake in mouse brain slices, Neurochem. Res., 7: 1391–1401.

    Article  CAS  Google Scholar 

  7. Kontro, P., and Oja, S.S., 1987, Taurine and GABA binding in mouse brain: effects of freezing, washing and Triton X-100 treatment on membranes, Int. J. Neurosci., 32: 881–889.

    Article  CAS  Google Scholar 

  8. Kontro, P., and Oja, S.S., 1987, Taurine and GABA release from mouse cerebral cortex slices: potassium stimulation releases more taurine than GABA from developing brain, Dev. Brain Res., 37: 277–291.

    Article  CAS  Google Scholar 

  9. Korpi, E.R., and Oja, S.S., 1983, Characteristics of taurine release from cerebral cortex slices by sodium-deficient medium, Brain Res., 289: 197–204.

    Article  CAS  Google Scholar 

  10. Korpi, E.R., Kontro, P., Nieminen, K., Mamela, K.-M., and Oja, S.S., 1981, Spontaneous and depolarization-induced efflux of hypotaurine from mouse cerebral cortex slices: comparison with taurine and GABA, Life Sci., 29: 811–816.

    Article  CAS  Google Scholar 

  11. Laakso, M.-L., and Oja, S.S., 1976, Factors influencing the inulin space in cerebral cortex slices from adult and 7-day-old rats, Acta Physiol. Scand., 97: 486–494.

    Article  CAS  Google Scholar 

  12. Lehmann, A., 1989, Effects of microdialysis-perfusion with anisoosmotic media on extracellular amino acids in the rat hippocampus and skeletal muscle, J. Neurochem., 53: 525–535.

    Article  CAS  Google Scholar 

  13. Oja, S.S., and Kontro, P., 1980, Hypotaurine uptake by brain slices from adult and 8-day-old mice, J. Neurochem., 35: 1303–1308.

    Article  CAS  Google Scholar 

  14. Oja, S.S., and Kontro, P., 1983, Taurine, in: “Handbook of Neurochemistry”, Vol. 3, 2nd edn, A. Lajtha, ed., Plenum Press, New York, pp. 501–533.

    Google Scholar 

  15. Oja, S.S., and Kontro, P., 1990, Neuromodulatory and trophic actions of taurine, Prog. Clin. Biol. Res., 351: 69–76.

    CAS  Google Scholar 

  16. Oja, S.S., and Saransaari, P., 1992, Cell volume changes and taurine release in cerebral cortical slices, Adv. Exp. Med. Biol., 315: 369–374.

    Article  CAS  Google Scholar 

  17. Oja, S.S., and Saransaari, P., 1992, Taurine release and swelling of cerebral cortex slices from adult and developing mice in media of different ionic compositions, J. Neurosci. Res., 32: 551–561.

    Article  CAS  Google Scholar 

  18. Oja, S.S., and Vahvelainen, M.-L., 1975, Transport of amino acids in brain slices, in: “Research Methods in Neurochemistry”, Vol. 3, N. Marks, and R. Rodnight, eds., Plenum Press, New York, pp. 67–137.

    Chapter  Google Scholar 

  19. Oja, S.S., Kontro, P., and Lähdesmäki, P., 1977, Amino acids as inhibitory neurotransmitters, Prog. Pharmacol., 1/3: 1–119.

    Google Scholar 

  20. Pasantes-Morales, H., Morán, J., and Schousboe, A., 1990, Volume-sensitive release of taurine from cultured astrocytes: properties and mechanism, Glia, 3: 427–432.

    Article  CAS  Google Scholar 

  21. Philibert, R.A., Rogers, K.L., and Dutton, G.R., 1989, Stimulus-coupled taurine efflux from cerebellar neuronal cultures: on the roles of Ca++ and Na+, J. Neurosci. Res., 22: 167–171.

    Article  CAS  Google Scholar 

  22. Sánchez-Olea, R., Morán, J., and Pasantes-Morales, H., 1992, Changes in taurine transport evoked by hyperosmolarity in cultured astrocytes, J. Neurosci. Res., 32: 86–92.

    Article  Google Scholar 

  23. Saransaari, P., and Oja, S.S., 1991, Excitatory amino acids evoke taurine release from cerebral cortex slices from adult and developing mice, Neuroscience, 45: 451–459.

    Article  CAS  Google Scholar 

  24. Saransaari, P., and Oja, S.S., 1992, Release of GABA and taurine from brain slices, Prog. Neurobiol., 38: 455–482.

    Article  CAS  Google Scholar 

  25. Schousboe, A., and Pasantes-Morales, H., 1992, Role of taurine in neural cell volume regulation, Can. J. Physiol. Pharmacol., 70: S356–S361.

    Article  CAS  Google Scholar 

  26. Schousboe, A., Morán, J., and Pasantes-Morales, H., 1990, Potassium-stimulated release of taurine from cultured cerebellar granule neurons is associated with cell swelling, J. Neurosci. Res., 27: 71–77.

    Article  CAS  Google Scholar 

  27. Simpson, J.W., Allen, K., and Awapara, J., 1959, Free amino acids in some aquatic invertebrates, Biol. Bull., 117: 371–381.

    Article  CAS  Google Scholar 

  28. Solis, J.M., Herranz, A.S., Herreras, O., Lerma, J., and Martin del Rio, R., 1988, Low chloride-dependent release of taurine by a furosemide-sensitive process in the in vivo rat hippocampus, Neuroscience, 24: 885–891.

    Article  CAS  Google Scholar 

  29. Solis, J.M., Herranz, A.S., Herreras, O., Menéndez, N., and Martin del Rio, R., 1990, Weak organic acids induce taurine release through and osmotic-sensitive process in in vivo rat hippocampus, J. Neurosci. Res., 26: 159–167.

    Article  CAS  Google Scholar 

  30. Tigges, G.A., Philibert, R.A., and Dutton, G.R., 1990, K+-and temperature-evoked taurine efflux from hypothalamic astrocytes, Neurosci. Lett., 119: 23–26.

    Article  CAS  Google Scholar 

  31. Vahvelainen, M.-L., and Oja, S.S., 1972, Kinetics of influx of phenylalanine, tyrosine, tryptophan, histidine and leucine into slices of brain cortex from adult and 7-day-old rats, Brain Res., 40: 477–488.

    Article  CAS  Google Scholar 

  32. van Gelder, N.M., 1989, Brain taurine content as a function of cerebral metabolic rate: osmotic regulation of glucose derived water production, Neurochem. Res., 14: 495–497.

    Article  Google Scholar 

  33. Wade, J.V., Olson, J.P., Samson, F.E., Nelson, S.R., and Pazdernik, T.L., 1988, A possible role of taurine in osmoregulation within the brain, J. Neurochem., 51: 740–745.

    Article  CAS  Google Scholar 

  34. Walz, W., and Hinks, E.C., 1985, Carrier-mediated KC1 accumulation accompanied by water movements is involved in the control of physiological K+ levels by astrocytes, Brain Res., 343: 44–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Oja, S.S., Saransaari, P. (1994). Relations of Taurine Release and Influx to Cell Volumes in Cerebral Cortical Slices. In: Huxtable, R.J., Michalk, D. (eds) Taurine in Health and Disease. Advances in Experimental Medicine and Biology, vol 359. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1471-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1471-2_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1473-6

  • Online ISBN: 978-1-4899-1471-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics