Skip to main content

Thermal Runaway

  • Chapter
  • 382 Accesses

Abstract

Heat may be generated in batteries by chemical and electrochemical reactions and by physical processes. If the rate of heat generation exceeds the rate of heat removal, the temperature of the battery will increase. As the temperature increases, so do the rates of any exothermic reactions and so does the rate of heat transfer. Chemical reaction rates tend to increase exponentially with temperature, and heat transfer rates increase linearly with temperature at moderate temperatures. At higher temperatures where radiation contributes to heat transfer, the rate of heat transfer has a component that increases with the fourth power of the temperature. Two thermal time patterns may be considered (Fig. 6.1A and B). Actual histories fall somewhere between the two extreme patterns shown in the figure. During the initial phase of pattern A, more heat is generated than can be removed by heat transfer, and the battery temperature increases. Then at time t 1, the rate of increase of heat generation reaches a maximum value, and the rate of increase then decreases until at time t 2 the heat generation attains its maximum value, beyond which it decreases. It may decrease because of the exhaustion of the reactive materials or because some external driver of heat generation has ceased to function. At time t 3, the rate of heat generation becomes equal to the rate of heat transfer, and the battery temperature decreases beyond that time. If the maximum temperature reached by the battery is less than that required to induce venting, rupture, or explosions, the battery has experienced what we call a benign, temporary thermal runaway.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • John S. Newman, Electrochemical Systems, Prentice-Hall, New York (1973).

    Google Scholar 

  • D. Bernardi, E. Pawlikowski, and J. H. Newman, A general energy balance for battery systems, J. Electrochem. Soc. 132, 5 (1985).

    Article  CAS  Google Scholar 

  • K. W. Choi and N. P. Yao, Heat transfer in lead-Acid batteries designed for electric vehicle propulsion applications, J. Electrochem. Soc. 126, 1321 (1979).

    Article  CAS  Google Scholar 

  • J. Lee, K. W. Choi, N. P. Yao, and C. C. Christianson, Three-dimensional thermal modeling of electric vehicle batteries, J. Electrochem. Soc. 133, 1286 (1986).

    Article  CAS  Google Scholar 

  • H. Gu, T. V. Nguyen, and R. E. White, A mathematical model of a lead-acid cell: Discharge, rest and charge, J. Electrochem. Soc. 134, 2953 (1987).

    Article  CAS  Google Scholar 

  • R. M. La Follette and D. N. Bennion, Design fundamentals of high power density, pulsed discharge lead acid batteries. I. Experimental, J. Electrochem. Soc. 137, 3693 (1990).

    Article  Google Scholar 

  • R. M. LaFollette and D. N. Bennion, Design fundamentals of high power density, pulsed discharge lead acid batteries. II. Modeling, J. Electrochem. Soc. 137, 3701 (1990).

    Article  CAS  Google Scholar 

  • Z. Mao, R. E. White, and B. Jay, Current distribution in a HORIZONTM lead-acid battery during discharge, J. Electrochem. Soc. 138, 1615 (1991).

    Article  CAS  Google Scholar 

  • D. Fan and R. E. White, A mathematical model of a sealed nickel-cadmium battery, J. Electrochem. Soc. 138, 17 (1991).

    Article  CAS  Google Scholar 

  • D. Fan and R. E. White, Mathematical modeling of a nickel-cadmium battery, J. Electrochem. Soc. 138, 2952 (1991).

    Article  CAS  Google Scholar 

  • K. W. Choi and N. P. Yao, A mathematical model for porous nickel electrodes in zinc/nickel oxide cells, in Proceedings of the Symposium on Battery Design and Optimization, Proc. Vol. 79–1, p. 62, The Electrochemical Society, Pennington, New Jersey (1979).

    Google Scholar 

  • Z. Mao and R. E. White, Mathematical modeling of a primary zinc/air battery, J. Electrochem. Soc. 139, 1105 (1992).

    Article  CAS  Google Scholar 

  • A. N. Dey and P. Bro, Primary Li/SOCl2 cells. IV. Cathode reaction profiles, J Electrochem. Soc. 125, 1574 (1978).

    Article  CAS  Google Scholar 

  • K. Y. Kim, H. V. Venkatasetty, and D. L. Chua, Studies on thermochemical and electrochemical reactions and heat distribution in Li/SOC12 battery system, in Proceedings of the 29th Power Sources Symp., Electrochemical Society, Pennington, New Jersey (1981). Conference, Atlantic City, New Jersey, June 1980.

    Google Scholar 

  • S. Szpak, C. J. Gabriel, and J. R. Driscoll, Catastrophic thermal runaway in lithium batteries, Electrochim. Acta 32, 239 (1987).

    Article  CAS  Google Scholar 

  • T. I. Evans and R. E. White, A thermal analysis of a spirally wound battery using a simple mathematical model, J. Electrochem. Soc. 136, 2145 (1989).

    Article  CAS  Google Scholar 

  • T. I. Evans, T. V. Nguyen, and R. E. White, A mathematical model of a lithium/thionyl chloride primary cell, J. Electrochem. Soc. 136, 328 (1989).

    Article  CAS  Google Scholar 

  • Y. I. Cho and D.-W. Chee, Thermal analysis of primary cylindrical lithium cells, J. Electrochem. Soc. 138, 927 (1991).

    Article  CAS  Google Scholar 

  • R. Cohen, A. Melman, N. Livne, and E. Peled, Heat generation in lithium-thionyl chloride cells, J. Electrochem. Soc. 139, 2386 (1992).

    Article  CAS  Google Scholar 

  • E. E. Kalu and R. E. White, Thermal analysis of spirally wound Li/BCX and Li/SOCl 2 cells, J. Electrochem. Soc. 140, 23 (1993).

    Article  CAS  Google Scholar 

  • D. M. Bernardi, H. Gu, and A. Y. Schoene, Two-dimensional mathematical model of a lead-acid cell, J. Electrochem. Soc. 140, 2250 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levy, S.C., Bro, P. (1994). Thermal Runaway. In: Battery Hazards and Accident Prevention. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1459-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1459-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1461-3

  • Online ISBN: 978-1-4899-1459-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics