Skip to main content

Excitotoxic Lesions of the Neostriatum as an Animal Model of Huntington’s Disease

  • Chapter
Book cover Toxin-Induced Models of Neurological Disorders

Abstract

Huntington’s disease (HD) is an autosomal dominant disorder characterized by a progressive dementia coupled with bizarre uncontrollable movements and abnormal postures. The disease is found in nearly all ethnic and racial groups with slight variations in prevalence rates. Overall, the prevalence rate of HD in the United States is approximately 50/1,000,000 (Reed and Chandler, 1958; Sanberg and Coyle, 1984). Although HD may occur during the juvenile years (Korenyi and Whittier, 1973) the manifestation of the disorder typically occurs in middle life, about 35–45 years of age. From the time of onset, an intractable course of mental deterioration and progressive motor abnormalities begins, with death usually occurring within 15 years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albin, R.L., Young, A.B., Penney, J.B., Handelin, B., Balfour, R., Anderson, K.D., Markel, D.S., Tourtellotte, W.W., and Reiner, A., 1990, Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in presymptomatic Huntington’s disease, N. Engl. J. Med. 322 (18):1293–1298.

    Article  PubMed  CAS  Google Scholar 

  • Aquidonius, S.M., Eckernas, S.A., and Sundwall, A., 1975, Regional distribution of choline acetyltransferase in the human brain: Changes in Huntington’s chorea, J. Neurol. Neurosurg. Psychiatry 38:669–677.

    Article  Google Scholar 

  • Araki, M., McGeer, P.L., and McGeer, E.G., 1985, Striatonigral and pallidonigral pathways studied by a combination of retrograde horseradish peroxidase tracing and pharmacohistochemical method for gamma aminobutyric acid transaminase, Brain Res. 331:17–24.

    Article  PubMed  CAS  Google Scholar 

  • Arregui, A., Bennett, J.P., Jr., Bird, E.D., Yamamura, H.I., Iversen, L.I., and Snyder, S.H., 1977, Huntington’s chorea: Selective depletion of activity of angiotensin converting enzyme in the corpus striatum, Ann. Neurol. 2: 294–298.

    Article  PubMed  CAS  Google Scholar 

  • Arregui, A., Emson, P.C., and Spokes, E.G., 1978, Angiotensin-Converting enzyme in substantia nigra: Reduction of activity in Huntington’s disease and after intrastriatal kainic acid in rats, Eur. J. Pharmacol. 52:121–124.

    Article  PubMed  CAS  Google Scholar 

  • Arregui, A., Iversen, L.L., Spokes, E.G.S., and Emson, P.C., 1979, Alterations in post-mortem brain angiotensin-converting enzyme activity and some neuropeptides in Huntington’s disease, Adv. Neurol. 23:517–525.

    CAS  Google Scholar 

  • Arvin, B., Neville, L.F., and Roberts, P.J., 1988, 2-Chlorodenosine prevents kainic acid-induced toxicity in rat striatum, Neurosci. Lett. 93:336–340.

    Article  PubMed  CAS  Google Scholar 

  • Averback, P., 1980, Histopathology of acute cell loss in Huntington’s chorea brain, J. Pathol. 132:55–61.

    Article  PubMed  CAS  Google Scholar 

  • Barr, A. N., Heinze, W.J., Dobben, G.D., Valvassori, G., and Sugar, O., 1978, Bicaudate index in computerized tomography of Huntington’s disease and cerebral atrophy, Neurology 28:1196–1200.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J., and Martin, J.B., 1986, Replication of the neurochemical characteristics of Huntington’s disease by quinolinic acid, Nature 321:168–171.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M.F., Kowall, N.W., Swartz, K.J., Ferranti, R.J., and Martin, J.B., 1988a, Systemic approaches to modifying quinolinic acid striatal lesions in rats, J. Neurosci. 8:3901–3908.

    PubMed  CAS  Google Scholar 

  • Beal, M.F., Ellison, D.W., Mazurek, M.F., Swartz, K.J., Malloy, J.R., Bird, E., and Martin, J.B., 1988b, A detailed examination of substance P in pathologically graded cases of Huntington’s disease, J. Neurol. Sci. 84:51–61.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M.F., Kowall, N.W., Swartz, K.J., Ferranti, R.J., and Martin, J.B., 1989, Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions, Synapse 3:38–47.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M.F., Matson, W.R., Swartz, K.J., Gamache, P.H., and Bird, E.D., 1990, Kynurenine pathway measurements in Huntington’s disease striatum: Evidence for reduced formation of kynurenic acid, J. Neurochem. 55(4):1327–1339.

    Article  PubMed  CAS  Google Scholar 

  • Beal, M.F., Ferrante, R.J., Swartz, K.J., and Kowall, N.W., 1991, Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease, J. Neurosci. 11(6):1649–1659.

    PubMed  CAS  Google Scholar 

  • Beaumont, K., Maurin, Y., Reisine, T.D., Fields, J.Z., Spokes, E., Bird, E.D., and Yamamura, H.I., 1979, Huntington’s disease and its animal model alterations in kainic acid binding, Life Sci. 24:809–816.

    Article  PubMed  CAS  Google Scholar 

  • Becker, J.B., and Freed, W.J., 1988, Adrenal medulla grafts enhance functional recovery of the striatal dopamine system following substantia nigra lesions, Brain Res. 462:401–406.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari, Y., Tremblay, E., Ottersen, O.P., and Meldrum, B.S., 1980, The role of epileptic activity in hippocampal and “remote” cerebral lesions induced by kainic acid, Brain Res. 191:79–97.

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F., 1973, Brain dopamine an syndromes of Parkinson and Huntington-clinical morphological and neurochemical correlation, J. Neurol. Sci. 20:415–455.

    Article  PubMed  CAS  Google Scholar 

  • Bird, E.D., 1980, Chemical pathology of Huntington’s disease, Ann. Rev. Pharmacol. Toxicol. 20:533–551.

    Article  CAS  Google Scholar 

  • Bird, E.D., and Iversen, L.L., 1974, Huntington’s chorea: Postmortem measurement of glutamic acid decarboxylase, choline acetyltransferase, and dopamine in basal ganglia, Brain 97:457–461.

    Article  PubMed  CAS  Google Scholar 

  • Bjorklund, A., Lindvall, O., Isacson, O., Brundin, P., Wictorin, K., Strecker, R.E., Clarke, D.J., and Dunnett, S.B., 1988, Mechanisms of action of intracerebral neural transplants: Studies on nigral and striatal grafts to the lesioned striatum, Trends Neurosci. 10:509–516.

    Article  Google Scholar 

  • Boegman, R.J., Smith, Y, and Parent, A., 1987, Quinolinic acid does not spare striatal neuropeptide Y-immunoreactive neurons, Brain Res. 415:178–182.

    Article  PubMed  CAS  Google Scholar 

  • Bots, G., Th, A.M., and Bruyn, G.W., 1981, Neuropathological changes of the nucleus accumbens in Huntington’s chorea, Acta. Neuropathol. 55:21–22.

    Article  PubMed  CAS  Google Scholar 

  • Bowman, M., and Lewis, M.S., 1980, Site of subcortical damage in diseases which resemble schizophrenia, Neuropsychology 18:597–601.

    Article  CAS  Google Scholar 

  • Brandt, J., Folstein, S.E., and Folstein, M.F., 1988, Differential cognitive impairment in Alzheimer’s disease and Huntington’s disease, Ann Neurol. 23:555–561.

    Article  PubMed  CAS  Google Scholar 

  • Brann, M.R., and Emson, P.C., 12980, Microiontophoretic injection of fluorescent tracer combined with simultaneous immunofluorescent histochemistry for the demonstration of efferents from the caudate putamen projecting to the globus pallidus, Neurosci. Lett. 16:61–66.

    Google Scholar 

  • Bridges, R.J., Neito-Sampedro, M., and Cotman, C.W., 1985, Stereospecific binding of L-glutamate to astrocyte membranes, Soc. Neurosci. Abstr. 11:110.

    Google Scholar 

  • Bruyn, G.W., 1968, Huntington’s chorea, historical, clinical and laboratory synopsis, Handbook Clin. Neurol. 6:298.

    Google Scholar 

  • Bruyn, G.W., Bots, G., Th, A.M., and Dom, R., 1979, Huntington’s chorea: Current neuro-pathological status, Adv. Neurol. 23:83–93.

    Google Scholar 

  • Buck, S.H., Burks, T.F., Brown, M.R., and Yamamura, H.I., 1981, Reduction in basal ganglia and substantia nigra substance P levels in Huntington’s disease, Brain Res. 209:464–469.

    Article  PubMed  CAS  Google Scholar 

  • Buell, U., Costa, D.C., Kirsch, G., Moretti, J.L., Van Royen, E.A., and Schober, O., 1990, The investigation of dementia with single photon emission tomography, Nucl. Med. Commun. 11:823–841.

    PubMed  CAS  Google Scholar 

  • Burns, A., Psych, M.R.C., Folstein, S., Brandt, J., and Folstein, M., 1990, Clinical assessment of irritability, aggression, and apathy in Huntington and Alzheimer disease, J. Nerv. Ment. Dis. 178(1):20–26.

    Article  PubMed  CAS  Google Scholar 

  • Calderon, S.F., Sanberg, P.R., and Norman, A.B., 1988, Quinolinic acid lesions of rat striatum abolish D1 and D2-dopamine receptor mediated catalepsy, Brain Res. 450:403–407.

    Article  PubMed  CAS  Google Scholar 

  • Carter, C.J., 1982, Glutamine synthetase activity in Huntington’s disease, Life Sci. 31:1151–1159.

    Article  PubMed  CAS  Google Scholar 

  • Castaigne, P., Escourelle, R., and Gray, F., 1976, Huntington’s chorea and cerebellar atrophy (a case report with clinical and pathological data), Rev. Neurol. (Paris) 132:233.

    CAS  Google Scholar 

  • Chan-Palay, V., 1977, Indolamine neurons and their processes in the normal rat brain and in chronic diet-induced thiamine deficiency demonstrated by uptake of 3H-serotonin, J. Comp. Neurol. 176:467–494.

    Article  PubMed  CAS  Google Scholar 

  • Chase, T.N., 1973, Biochemical and pharmacological studies of monoamines in Huntington’s chorea, Adv. Neurol. 1:533–542.

    Google Scholar 

  • Clarke, D.J., Dunnett, S.B., Isacson, O., and Bjorklund, A., 1988a, Striatal grafts in the ibotenic acid lesioned neostriatum: Ultrastructural and immunocytochemical studies, Prog. Brain Res. 78:47–53.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, D.J., Dunnett, S.B., Isacson, O., Sirinathsinghji, D.J.S., and Bjorklund, A., 1988b, Striatal grafts in rats with unilateral neostriatal lesions. I: Ultrastructural evidence of afferent synaptic inputs from the host nigrostriatal pathway, Neuroscience 24:791–801.

    Article  PubMed  CAS  Google Scholar 

  • Cotman, C.W., and Iversen, L.L., 1987, Excitatory amino acids in the brain—focus on NMDA receptors, Trends Neurosci. 10:261–265.

    Google Scholar 

  • Cotman, W.W., and Monaghan, D.T., 1988, Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity, Ann. Rev. Neurosci. 11:61–80.

    Article  PubMed  CAS  Google Scholar 

  • Cotman, C.W., Managhan, D.T., Ottersen, O.P., and Storm-Mathisen, J., 1987, Anatomical organization of excitory amino acid receptors and their pathways, Trends Neurosci. 10:273–279.

    Article  CAS  Google Scholar 

  • Coyle, J.T., 1979, An animal model for Huntington’s disease, Biol. Psychiatry 14:251–276.

    PubMed  CAS  Google Scholar 

  • Coyle, J.T., and Schwarcz, R., 1976, Lesion of striatal neurones with kainic acid provides a model for Huntington’s chorea, Nature 253:244–246.

    Article  Google Scholar 

  • Coyle, J.T., Molliver, M.E., and Kuhar, M.J., 1978, In situ injection of kainic acid: A new model for selectively lesioning neural cell bodies and sparing axons of passage, J. Comp. Neurol. 180:301–323.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J.T., Price, D.L., and Delong, M.R., 1983, Alzheimer’s disease: A disorder of cholinergic innervation of cortex, Science 219:1184–1190.

    Article  PubMed  CAS  Google Scholar 

  • Cross, A.J., Slater, P., and Reynolds, G.P., 1986, Reduced high-affinity glutamate uptake sites in the brains of patients with Huntington’s disease, Neurosci. Lett. 67:198–202.

    Article  PubMed  CAS  Google Scholar 

  • Cudkowicz, M., and Kowall, N.W., 1990, Degeneration of pyramidal projection neurons in Huntington’s disease cortex, Ann. Neurol. 27(2):200–204.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, J.L., and Benson, D.F., 1988, Psychological dysfunction accompanying subcortical dementias, Ann. Rev. Med. 39:53–61.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S.W., and Roberts, P.J., 1987, No evidence for preservation of somatostatin-containing neurons after intrastriatal injections of quinolinic acid, Nature 327:326–329.

    Article  PubMed  CAS  Google Scholar 

  • Davies, S.W., and Roberts, P.J., 1988, Model of Huntington’s disease, Science 241:474–475.

    Article  PubMed  CAS  Google Scholar 

  • Davis, A., 1976, Emily—a victim of Huntington’s chorea, Nurs. Times 72:449.

    PubMed  CAS  Google Scholar 

  • Deckel, A.W., and Robinson, R.G., 1987, Receptor characteristics and behavioral consequences of kainic acid lesions and fetal transplants of the striatum, in “Cell and Tissue Transplantation into Adult Brain,” Volume 495 (E.C. Azmitia and A. Bjorklund, eds.), pp. 556–580, Annals of the New York Academy of Sciences, New York.

    Google Scholar 

  • Deckel, A.W., Robinson, R.G., Coyle, J.T., and Sanberg, P.R., 1983, Reversal of long-term locomotor abnormalities in the kainic acid model of Huntington’s disease by day-18 fetal striatal implants, Eur. J. Pharmacol. 93:287–288.

    Article  PubMed  CAS  Google Scholar 

  • Deckel, A.W., Moran, T.H., and Robinson, R.G., 1986a, Behavioral recovery following kainic acid lesions and fetal implants of the striatum occurs independent of dopaminergic mechanisms, Brain Res. 363:383–385.

    Article  PubMed  CAS  Google Scholar 

  • Deckel, A.W., Moran, T.H., Coyle, J.T., Sanberg, P.R., and Robinson, R.G., 1986b, Anatomical predictors of behavioral recovery following fetal striatal transplants, Brain Res. 365:249–258.

    Article  PubMed  CAS  Google Scholar 

  • Deckel, A.W., Moran, T.H., and Robinson, R.G., 1988a, Receptor characteristic and recovery of function following kainic acid lesions and fetal transplants of the striatum. I: Cholinergic systems, Brain Res. 474:27–38.

    Article  PubMed  CAS  Google Scholar 

  • Deckel, A.W., Moran, T.H., and Robinson, R.G., 1988b, Receptor characteristic and recovery function following kainic acid lesions and fetal transplants of the striatum. II: Dopaminergic systems, Brain Res. 474:39–47.

    Article  PubMed  CAS  Google Scholar 

  • Del Fiacco, M., Paxinos, G., and Cuello, A.C., 1982, Neostriatal enkephalin-immunoreactive neurons project to the globus pallidus, Brain Res. 231:1–17.

    Article  PubMed  Google Scholar 

  • Dewhurst, K., Oliver, J., Trick, K.L.K., and McKnight, A.L., 1979, Neuropsychiatrie aspects of Huntington’s disease, Confinia Neurol. 31:258–268.

    Article  Google Scholar 

  • DiFiglia, M., Schiff, L., and Deckel, A.W., 1988, Neuronal organization of fetal striatal grafts in kainate and sham-lesioned rat caudate nucleus: Light and electron microscope observations, J. Neurosci. 8:1112–1130.

    PubMed  CAS  Google Scholar 

  • Divac, J., Fonnum, F., and Storm-Mathisen, J., 1977, High-affinity uptake of glutamate in terminals of corticostriatal axons, Nature 266:377–378.

    Article  PubMed  CAS  Google Scholar 

  • Divac, J., Markowitsch, J.J., and Ptrizel, M., 1978, Behavioral and anatomical consequences of small intrastriatal lesions in the rat, Brain Res. 151:523–532.

    Article  PubMed  CAS  Google Scholar 

  • Dix, M.R., 1970, Clinical observations upon the vestibular responses in certain disorders of the central nervous system, Adv. Otorhinolaryngol. 17:118.

    PubMed  CAS  Google Scholar 

  • Dom, R., Malfoid, M., and Baro, F., 1976, Neuropathology of Huntington’s chorea, Neurology 26:64–68.

    Article  PubMed  CAS  Google Scholar 

  • Dragunow, M., Williams, M., and Faull, R.L.M., 1990, Haloperidol induces Fos and related molecules in intrastriatal grafts derived from fetal striatal primordia, Brain Res. 530:309–311.

    Article  PubMed  CAS  Google Scholar 

  • Du, F., Okuno, E., Whetsell, W.O., Jr., Kohler, C., and Schwarcz, R., 1991, Immunohistochemical localization of quinolinic acid phosphoribosyltransferase in the human neostriatum, Neurosci. 42(2):397–406.

    Article  CAS  Google Scholar 

  • Dulap, C.B., 1927, Pathological changes in Huntington’s chorea with special reference to the corpus striatum, Arch. Neurol. Psychiatry 18:867–943.

    Article  Google Scholar 

  • Dunnett, S.B., and Iversen, S.D., 1981, Learning impairments following selective kainic acid induced lesions within the neostriatum of rats, Behav. Brain Res. 2:189–209.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Isacson, O., Siriathsinghji, D.J.S., Clarke, D.J., and Bjorklund, A., 1988, Striatal grafts in rats with unilateral neostriatal lesions. III: Recovery from dopamine-dependent motor asymmetry and deficits in skilled paw reaching, Neuroscience 24:813–820.

    Article  PubMed  CAS  Google Scholar 

  • Dure, L.S. IV, Young, A.B., and Penney, J.B., 1991, Excitatory amino acid binding sites in the caudate nucleus and frontal cortex of Huntington’s disease, Ann. Neurol. 30(6) 1:785–793.

    Article  PubMed  Google Scholar 

  • Ellison, D.W., Beal, M.F., Mazurek, M.F., Malloy, J.R., Bird, E.D., and Martin, J.B., 1987, Amino acid neurotransmitter abnormalities in Huntington’s disease and the quinolinic acid model of Huntington’s disease, Brain 110:1657–1673.

    Article  PubMed  Google Scholar 

  • Emerich, D.F., Zubrick, E.M., Shipley, M.T., Norman, A.B., and Sanberg, P.R., 1991, Female rats are more sensitive to the locomotor alterations following quinolinic acid-induced striatal lesions: Effects of striatal transplants, Exp. Neurol. 111:369–378.

    Article  PubMed  CAS  Google Scholar 

  • Emson, P.C., Rehfeld, J.F., Langevin, H., and Rosser, M., 1980, Reduction in cholecystokinin-like immunoreactivity in the basal ganglia in Huntington’s disease, Brain Res. 198:497–500.

    Article  PubMed  CAS  Google Scholar 

  • Emson, P.C., Dawbarn, D., Rosser, M.N., Rehfeld, J.F., Brundin, P., Isacson, O., and Bjorklund, A., 1985, Cholecystokinin content in the basal ganglia in Huntington’s disease: The expression of cholecystokinin immunoreactivity in striatal grafts to ibotenic acid-lesioned rat striatum, in “Neuronal Cholecystokinin” (J. Vanderhaegen and J.D. Cawley, eds.), pp. 488–494, The New York Academy of Sciences, New York.

    Google Scholar 

  • Enna, S.J., Bennett, J.P., Bylund, D.B., Snyder, S.H., Bird, E.D., and Iversen, L.L., 1976a, Alterations of brain neurotransmitter receptor binding in Huntington’s chorea, Brain Res. 116:531–537.

    Article  PubMed  CAS  Google Scholar 

  • Enna, S.J., Bird, E.D., Bennett, J.P., Bylund, D.B., Snyder, S.H., and Iversen, L.L., 1976b, Huntington’s chorea changes in neurotransmitter receptors in the brain, N. Engl. J. Med. 29:1305–1309.

    Article  Google Scholar 

  • Ferrante, R.J., Beal, M.F., Kowall, N.W., Richardson, E.P., and Martin, J.B., 1987, Sparing of acetylcholinesterase-containing striatal neurons in Huntington’s disease, Brain Res. 415:178–182.

    Article  Google Scholar 

  • Ferrante, R.J., Kowall, N.W., and Richardson, E.P. Jr., 1991, Proliferative and degenerative changes in striatal spiny neurons in Huntington’s disease: A combined study using the section-Golgi method and calbindin D28k immunocytochemistry, J. Neurosci. 11(12):3877–3887.

    PubMed  CAS  Google Scholar 

  • Fibiger, H.C., Pruditz, R.E., McGeer, P.L., and McGeer, E.G., 1972, Axonal transport in nigrostriatal and nigrothalamic neurons: Effects of medial forebrain bundle lesions and 6-hydroxydopamine, J. Neurochem. 19:1697–1708.

    Article  PubMed  CAS  Google Scholar 

  • Fields, J.Z., Reizine, T.D., and Yamamura, H.I., 1978, Loss of striatal dopaminergic receptors after intrastriatal kainic acid injection, Life Sci. 23:569–574.

    Article  PubMed  CAS  Google Scholar 

  • Filloux, F., Wagster, M.V., Folstein, S., Price, D.L., Hedreen, J.C., Dawson, T.M., and Wamsley, J.K., 1990, Nigral dopamine type-1 receptors are reduced in Huntington’s disease: A post-mortem autoradiographic study using [3H]SCH 23390 and correlation with [3H]forskolin binding, Exp. Neurol. 110:219–227.

    Article  PubMed  CAS  Google Scholar 

  • Finn, S.F., Hyman, B.T., Storey, E., Miller, J.M., and Beal, M.F., 1991, Effects of aging on quinolinic acid lesions in rat striatum, Brain Res. 562:276–280.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F., Storm-Mathisen, J., and Divac, I., 1981, Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibers in rat brain, Neuroscience 6:863–873.

    Article  PubMed  CAS  Google Scholar 

  • Forno, L.S., and Jose, C., 1973, Huntington’s chorea: A pathological study, Adv. Neurol. 1:453–470.

    Google Scholar 

  • Foster, A.C., Collins, J.F., and Schwarcz, R., 1983, On the excitotoxic properties of quinolinic acid, 2,3-piperidine dicarboxylic acids and structurally related compounds, Neuropharmacology 22:1331–1342.

    Article  PubMed  CAS  Google Scholar 

  • Foster, A.C., Vezzani, A., French, E.D., and Schwarcz, R., 1984, Kynurenic acid blocks metabolite quinolinic acid, Neurosci. Lett. 48:273–278.

    Article  PubMed  CAS  Google Scholar 

  • Foster, A.C., Whetsell, W.O., Bird, E.D., and Schwarcz, R., 1985, Quinolinic acid phosphoribosyltransferase in human and rat brain: Activity in Huntington’s disease and in quinolate-lesioned rat striatum, Brain Res. 336:207–214.

    Article  PubMed  CAS  Google Scholar 

  • Foster, A.C., and Wong, E.H.F., 1987, The novel anticonvulsant MK-801 binds to the activated site of the N-methyl-D-aspartate receptor in rat brain, Br. J. Pharmacol. 91:403–409.

    Article  PubMed  CAS  Google Scholar 

  • Foster, A.C., Gill, R., Kemp, J.A., and Woodruff, G.N., 1987, Systemic administration of MK-801 prevents N-methyl-D-aspartate-induced neuronal degeneration in rat brain, Neurosci. Lett. 76:307–311.

    Article  PubMed  CAS  Google Scholar 

  • Freed, W.J., Cannon-Spoor, H.E., and Krauthamer, E., 1986, Intrastriatal adrenal medulla grafts in rats: Long-term survival and behavioral effects, J. Neurosurg. 65:664–670.

    Article  PubMed  CAS  Google Scholar 

  • Gage, F.H., and Bjorklund, A., 1986, Cholinergic septal grafts into the hippocampal formation improve spatial learning and memory in aged rats by an atropine-sensitive mechanism, J. Neurosci. 6:2837–2847.

    PubMed  CAS  Google Scholar 

  • Gayle, J.S., Bird, E.D., Spokes, E.G., Iversen, L.L., and Jessell, T., 1978, Human brain substance P distribution in controls in Huntington’s chorea, J. Neurochem. 30:633–634.

    Article  Google Scholar 

  • Gebbink, T.B., 1986, Huntington’s chorea: Fibre changes in the basal ganglia, Handbook Clin. Neurol. 6:399.

    Google Scholar 

  • Gerfen, C.R., Herkenham, M., and Thibault, J., 1987, The neostriatal mosaic. II: Patch- and matrix-directed mesostriatal dopaminergic system, J. Neurosci. 7:3915–3934.

    PubMed  CAS  Google Scholar 

  • Gill, R., Foster, A.C., and Woodruff, G.N., 1987, Systemic administration of MK-801 protects against ischemia-induced hoppocampal neurodegeneration in the gerbil, J. Neurosci. 7:3343–3349.

    PubMed  CAS  Google Scholar 

  • Gilliam, T.C., Gusella, J.F., and Lehrach, H., 1988, Molecular genetic strategies to investigate Huntington’s disease, Adv. Neurol. 48:465–469.

    Google Scholar 

  • Giordano, M., Houser, S.H., and Sanberg, P.R., 1988, Intraparenchymal fetal striatal transplants and recovery in kainic-acid-lesioned rats, Brain Res. 446:183–188.

    Article  PubMed  CAS  Google Scholar 

  • Giordano, M., Ford, L., Shipley, M.T., and Sanberg, P.R., 1990a, Neural grafts and pharmacological intervention in a model of Huntington’s disease, Brain Res. Bull. 25:453–465.

    Article  PubMed  CAS  Google Scholar 

  • Giordano, M., Ford, L., Norman, A.B., and Sanberg, P.R., 1990b, MK-801 prevents quinolinic acid-induced behavioral deficits and neurotoxicity in the striatum, Brain Res. Bull. 24:433–465.

    Article  Google Scholar 

  • Giordano, M., Lu, S.Y., Emerich, D.F., Pixley, S.K., Norgren, R.B., Lehman, M.N., and Norman, A.B., 1991, Behavioral effects of transplants on cultured astrocytes on excitotoxin-induced locomotor behavior, Soc. Neurosci. Abstr. 17:903.

    Google Scholar 

  • Girotti, F., Marano, R., Soliver Geminiani, G., and Scagliano, G., 1988, Relationship between motor and cognitive disorders in Huntington’s disease, J. Neurol. 235:454–457.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Heydrich, J., and Peroutka, S.J., 1991, Postsynaptic localization of 5-HT 1D receptor binding sites in human caudate, Exp. Neurol. 113:28–30.

    Article  PubMed  CAS  Google Scholar 

  • Gray, P.N., May, P.C., and Elkin, J., 1980, L-glutamate toxicity in Huntington’s disease, Biochem. Biophys. Res. Commun. 95:707–714.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A.M., 1983, Biochemical anatomy of the striatum, in “Chemical Neuroanatomy” (P.C. Emson, ed.), pp. 427–503, Raven Press, New York.

    Google Scholar 

  • Graybiel, A.M., Ragsdale, C.W., Jr., Yoneoka, E.S., and Elde, R.P., 1981, An immunohistochemical study on enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striasomal compartments visible by acetylcholinesterase staining, Neuroscience 6:377–397.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A.M., Lui, F.C., and Dunnett, S.B., 1989, Intrastriatal grafts derived from fetal striatal primordia. L: Phenotype and modular organization, J. Neurosci. 9:3250–3271.

    PubMed  CAS  Google Scholar 

  • Gusella, J.F., Wexler, N.S., Conneally, P.M., Naylor, S.L., Anderson, M.A., Tanzi, R.E., Shoulson, I., Bonilla, E., and Martin, J.B., 1983, A polymorphic marker genetically linked to Huntington’s disease, Nature 306:234–238.

    Article  PubMed  CAS  Google Scholar 

  • Hagenmeyer-Houser, S.H., and Sanberg, P.R., 1987, Locomotor behavior changes induced by E-17 striatal transplants in normal rats, Pharmacol. Biochem. Behav. 27:583–586.

    Article  PubMed  CAS  Google Scholar 

  • Hayden, M.R., Hewitt, J., Wasmuth, J.J., Kastelein, J.J., Langlois, S., Conneally, M., Haines, J., Smith, B., Hilbert, C., and Allard, D., 1988, A polymorphic DNA marker that represents a conserved expression sequence in the region of the Huntington’s disease gene, Am. J. Hum. Genet. 42:125–131.

    PubMed  CAS  Google Scholar 

  • Hantraye, P., Riche, D., Maziere, M., and Isacson, O., 1990, A primate model of Huntington’s disease: Behavioral and anatomical studies of unilateral excitotoxic lesions of the caudate-putamen in the baboon, Exp. Neurol. 108:91–104.

    Article  PubMed  CAS  Google Scholar 

  • Hays, S.E., Goodwin, F.K., and Paul, S.M., 1981, Cholecystokinin receptors are decreased in basal ganglia and cerebral cortex of Huntington’s disease, Brain Res. 225:452–456.

    Article  PubMed  CAS  Google Scholar 

  • Hedreen, J.C., Peyser, C.E., Folstein, S.E., and Ross, C.A., 1991, Neuronal loss in layers V and VI of cerebral cortex in Huntington’s disease, Neurosci. Lett. 133:257–261.

    Article  PubMed  CAS  Google Scholar 

  • Hefter, H., Homberg, V., Lange, H.W., Freund, H.J., 1987, Impairment of rapid movement in Huntington’s disease, Brain 110:585–612.

    Article  PubMed  Google Scholar 

  • Heindel, W.C., Butters, N., and Salmon, D.P., 1988, Impaired learning of a motor skill in patients with Huntington’s disease, Behav. Neurosci. 102:141–147.

    Article  PubMed  CAS  Google Scholar 

  • Heindel, W.C., Salmon, D.P., and Butters, N., 1990, Pictorial priming and cued recall in Alzheimer’s and Huntington’s disease, Brain Cogn. 13:282–295.

    Article  PubMed  CAS  Google Scholar 

  • Helm, G.A., Palmer, P.E., and Bennett, J.P., Jr., 1990, Fetal neostriatal transplants in the rat: A light and electron microscope Golgi study, Neuroscience 37(3):735–756.

    Article  PubMed  CAS  Google Scholar 

  • Henke, H., 1979, Kainic acid binding in human caudate nucleus: Effect of Huntington’s disease, Neurosci. Lett. 14:247–251.

    Article  PubMed  CAS  Google Scholar 

  • Hiley, R.C., and Bird, E.D., 1974, Decreased muscarinic receptor concentration in post-mortem brain in Huntington’s chorea, Brain Res. 30:355–358.

    Article  Google Scholar 

  • Hodges, J.R., Salmon, D.P., and Butters, N., 1991, The nature of the naming deficit in Alzheimer’s and Huntington’s disease, Brain 114:1547–1558.

    Article  PubMed  Google Scholar 

  • Hruska, R.E., and Silbergeld, E.K., 1979, Abnormal locomotion in rats after bilateral intrastriatal injection of kainic acid, Life Sci. 25:181–194.

    Article  PubMed  CAS  Google Scholar 

  • Huettner, J.E., and Bean, B.P., 1988, Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: Selective binding to open channels, Proc. Natl. Acad. Sci. U.S.A. 85:1307–1311.

    Article  PubMed  CAS  Google Scholar 

  • Innis, R.B., and Snyder, S.H., 1980, Cholecystokinin receptor binding in brain and pancreas: Regulation of pancreatic binding by cyclic and acyclic quanine nucleotides, Eur. J. Pharmacol. 65:123–124.

    Article  PubMed  CAS  Google Scholar 

  • Innis, R.B., Correa, F.M.A., Uhl, G.R., Schneider, B., and Snyder, S.H., 1979, Cholecystokinin octapeptide-like immunoreactivity: Histochemical localization in rat brain, Proc. Natl. Acad. Sci. U.S.A. 76:521–635.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Brundin, P., Kelly, P., Gage, F.H., and Bjorklund, A., 1984, Functional neuronal replacement by grafted striatal neurons in the ibotenic acid-lesioned rat striatum, Nature 311:458–460.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Brundin, P., Gage, F.H., and Bjorklund, A., 1985, Neural grafting in the rat model of Huntington’s disease: Progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting, Neuroscience 16:799–817.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Dunnett, S.B., and Bjorklund, A., 1986, Graft-induced behavioral recovery in an animal model of Huntington’s disease, Proc. Natl. Acad. Sci. U.S.A. 83:2728–2732.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Dawbarn, D., Brundin, P., Gage, F.H., Emson, P.C., and Bjorklund, A., 1987a, Neural grafting in a rat model of Huntington’s disease: Striosomal-like organization of striatal grafts as revealed by acetylcholinesterase histochemistry, immunocytochemistry, and receptor autoradiography, Neuroscience 22:481–497.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Pritzel, M., Dawbarn, D., Brundin, P., Kelly, A.T., Wiklund, L., Emson, P.C., Gage, F.H., Dunnett, S.B., and Bjorklund, A., 1987b, Striatal neural transplants in the ibotenic acid-lesioned rat neostriatum: Cellular and functional aspects, in “Cell and Tissue Transplantation into the Adult Brain” (E.C. Azmitia and A. Bjorklund, eds.), pp. 537–555, New York Academy of Sciences, New York.

    Google Scholar 

  • Isacson, O., Riche, D., Hantraye, P., Sofroniew, M.V., and Maziere, M., 1989, A primate model of Huntington’s disease; cross-species implantation of striatal precursor cells to the excitotoxically lesioned baboon caudate-putamen, Exp. Brain Res. 75:213–220.

    Article  PubMed  CAS  Google Scholar 

  • Isacson, O., Hantraye, P., Maziere, M., Sofroniew, M.V., and Riche, D., 1990, Apomorphine-induced dyskinesias after excitotoxic caudate-putamen lesions and the effects of neural trans-plantation in non-human primates, Prog. Brain Res. 82:523–533.

    Article  PubMed  CAS  Google Scholar 

  • James, W.E., Mefferd, R.B., and Kimbell, I., 1969, Early signs of Huntington’s chorea, Dis. Nerv. Syst. 30:556–559.

    PubMed  CAS  Google Scholar 

  • Jeringan, T.L., Salmon, D.P., Buters, N., and Hesselink, J.R., 1991, Cerebral structure on MRI. Part II: Specific changes in Alzheimer’s and Huntington’s diseases, Biol. Psychiatry 29:68–81.

    Article  Google Scholar 

  • Jervis, G.A., 1963, Huntington’s chorea in childhood, Arch. Neurol. 9:244–257.

    Article  PubMed  CAS  Google Scholar 

  • Jessell, T.M., Emson, P.S., Paxinos, G., and Cuello, A.C., 1978, Topographic projections of substance P and GABA pathways in the atriato- and pallido-nigral system: A biochemical and immunohistochemical study, Brain Res. 152:487–498.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J.W., and Ascher, P., 1987, Glycine potentiates the NMDA response in cultured mouse brain neurons, Nature 325:529–531.

    Article  PubMed  CAS  Google Scholar 

  • Joyce, J.N., Sapp, D.W., and Marshall, J.F., 1986, Human striatal dopamine receptors are organized in compartments, Proc. Natl. Acad. Sci. U.S.A. 83:8002–8006.

    Article  PubMed  CAS  Google Scholar 

  • Kanazawa, I., Bird, E.D., Gale, J.S., Iversen, L.L., Jessell, T.M., Muramoto, O., Spokes, E.G., and Sutoo, D., 1979, Substance P: Decrease in substantia nigra and globus pallidus in Huntington’s disease, Adv. Neurol. 23:495–504.

    CAS  Google Scholar 

  • Kemp, J.A., Foster, A.C., and Wong, E.H.K., 1987, Non-competitive antagonists of excitatory amino acid receptors, Trends Neurosci. 10:294–298.n

    Article  CAS  Google Scholar 

  • Kemp, J.A., Foster, A.C., Leeson, P.D., Priestly, T., Tidgett, R., Iversen, L.L., and Woodruff, G.N., 1988, 7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex, Proc. Natl. Acad. Sci. U.S.A. 85:6547–6550.

    Article  PubMed  CAS  Google Scholar 

  • Kesslak, J.P., Neito-Sampedro, M., Globus, J., and Cotman, C.W., 1986, Transplants of purified astrocytes promote behavioral recovery after frontal cortex ablation, Exp. Neurol. 92:377–390.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.S., Kornhuber, H.H., Holtzmuller, B., Schmid-Burgk, W., Mergner, T., and Krzepinski, G., 1980, Reduction of cerebrospinal fluid glutamic acid in Huntington’s chorea and in schizophrenic patients, Arch. Psychiatr. Nervenkr. 228:7.

    Article  PubMed  CAS  Google Scholar 

  • Kish, S.J., Shannack, K., and Hornykiewicz, O., 1987, Elevated serotonin and reduced dopamine in subregionally divided Huntington’s disease striatum, Ann. Neurol. 22:386–389.

    Article  PubMed  CAS  Google Scholar 

  • Klawans, H.L., Goetz, C.G., and Westheimer, R., 1972, Pathophysiology of schizophrenia and the striatum, Dis. Nerv. Syst. 33:711–719.

    PubMed  Google Scholar 

  • Klechner, N.W., and Dingledine, R., 1988, Requirements for glycine in activation of NMDA receptors expressed in Xenopus oocytes, Science 241:835–838.

    Article  Google Scholar 

  • Kloog, Y., Nadler, V., and Sokolovsky, M., 1988, Mode of binding of [3H]dibenzocycloalkenimine (MK-801) to the N-methyl-D-aspartate (NMDA) receptor and its therapeutic implication, FEBS Lett. 230:167–170.

    Article  PubMed  CAS  Google Scholar 

  • Knopman, D., and Nissen, M.J., 1991, Procedural learning is impaired in Huntington’s disease: Evidence from the serial reaction time task, Neuropsychologia 29:245–254.

    Article  PubMed  CAS  Google Scholar 

  • Kochhar, A., Zivin, J.A., Lyden, P.D., and Mazzarella, V., 1988, Glutamate antagonist therapy reduces neurologic deficits produced by focal central nervous system ischemia, Arch. Neurol. 45:148–153.

    Article  PubMed  CAS  Google Scholar 

  • Koh, J., Peters, S., and Choi, D.W., 1986, Neurons containing NADPH-diaphorase are selectively resistant to quinolinate toxicity, Science 234:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Koh, J.Y., and Choi, D.W., 1988, Cultured striatal neurons containing NADPH-diaphorase or acetylcholinesterase are selectively resistant to injury by NMDA agonists, Brain Res. 446:374–378.

    Article  PubMed  CAS  Google Scholar 

  • Korenyi, C., and Whittier, J.R., 1973, The juvenile form of Huntington’s chorea: Its prevalence and other observations, Adv. Neurol. 1:75–85.

    Google Scholar 

  • Kremer, H.P.H., Roos, R.A.C., Dingjan, G., Marani, E., Bots, G., Th., A.M., 1990, Atrophy of the hypothalamic lateral tuberal nucleus in Huntington’s disease, J. Neuropathol. Exp. Neurol. 49:371–382.

    Article  PubMed  CAS  Google Scholar 

  • Kromer, L.F., and Cornbrooks, L.S., 1985, Transplants of Schwann cell cultures promote axonal regeneration in adult mammalian brain, Proc. Natl. Acad. Sci. U.S.A. 82:6330–6334.

    Article  PubMed  CAS  Google Scholar 

  • Kuwert, T., Lange, H.W., Langen, K-J., Herzog, H., Aulich, A., and Feinendegen, L.E., 1989, Cerebral glucose consumption measured by PET in patients with and without psychiatric symptoms of Huntington’s disease, Psychiatry Res. 29:361–362.

    Article  PubMed  CAS  Google Scholar 

  • Kuwert, T., Lange, G.W., Langen, K-J., Herzog, H., Aulich, A., and Feinendegen, L.E., 1990, Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease, Brain 113:1405–1423.

    Article  PubMed  Google Scholar 

  • Labandeira-Garcia, J.L., Wictorin, K., Cunningham, E.T., and Bjorklund, A., 1991, Development of intrastriatal striatal grafts and their afferent innervation from the host, Neuroscience 42(2):407–426.

    Article  PubMed  CAS  Google Scholar 

  • Lange, H., Thorner, G., Hopf, A., and Schroeder, K.F., 1976, Morphometric studies of the neuro-pathological changes in choreatic diseases, J. Neurol. Sci. 28:401–425.

    Article  PubMed  CAS  Google Scholar 

  • Lange, H.W., 1981, Quantitative changes of telencephalon, diencephalon, and mesencephalon in Huntington’s chorea, postencephalitic and idiopathic parkinsonism, Verh. Anat. Ges. 75:923–925.

    Google Scholar 

  • Lublhuber, F., Hoell, K., Reisecker, F., Gebetsberger, B., Puerhringer, W., Trenkler, E., and Deisenhammer, E., 1989, Single photon emission computed tomography in Huntington’s chorea, Psychiatry Res. 29:337–339.

    Article  Google Scholar 

  • London, E.D., Yamamura, H.I., Bird, E.D., and Coyle, J.T., 1981, Decreased receptor-binding sites for kainic acid in brains of patients with Huntington’s disease, Biol. Psychiatry 16:155–162.

    PubMed  CAS  Google Scholar 

  • Lu, S.Y., Giordano, M., Norman, A.B., Shipley, M.T., and Sanberg, P.R., 1990, Behavioral effects of neural transplants into the intact striatum, Pharmacol. Biochem. Behav. 37:135–148.

    Article  PubMed  CAS  Google Scholar 

  • Lu, S.Y., Shipley, M.T., Norman, A.B., and Sanberg, P.R., 1991, Striatal, ventral mesenchephalic and cortical transplants into the intact striatum: A neuroanatomical study, Exp. Neurol. 113:109–130.

    Article  PubMed  CAS  Google Scholar 

  • Mann, J.J., Stanley, M., Gershon, S., and Rosser, M., 1980, Mental symptoms in Huntington’s disease and a possible primary aminergic neuron lesion, Science 210:1369–1371.

    Article  PubMed  CAS  Google Scholar 

  • Manyam, B.V., Giacobini, E., and Colliver, J.A., 1990, Cerebrospinal fluid acetylcholinesterase and choline measurements in Huntington’s disease, J. Neurol. 237:281–284.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J.B., 1989, Molecular genetic studies in the neuropsychiatric disorders, Trends Neurosci. 12:130–136.

    Article  PubMed  CAS  Google Scholar 

  • Mason, S.T., and Fibiger, H.C., 1979, Kainic acid lesions of the striatum in rats mimic the spontaneous motor abnormalities of Huntington’s disease. Neuropharmacology 18:403–407.

    Article  PubMed  CAS  Google Scholar 

  • Mason, S.T., Sanberg, P.R., and Fibiger, H.C., 1978, Kainic acid lesions of the striatum dissociate amphetamine and apomorphine stereotypy: Similarities to Huntington’s chorea, Science 201:352–355.

    Article  PubMed  CAS  Google Scholar 

  • Massman, P.J., Delis, D.C., and Butters, N., 1990, Are all subcortical dementias alike? Verbal learning and memory in Parkinson’s and Huntington’s disease patients, J. Clin. Exp. Neuropsychol. 12(5):729–744.

    Article  PubMed  CAS  Google Scholar 

  • Mattson, B., Gottfries, C.E., Roos, B.E., and Winblad, B., 1974, Huntington’s chorea: Pathology and brain amines, Acta Psychiatr. Scand. 255:269–277.

    Article  Google Scholar 

  • McAllister, J.P., 1987, Tritiated thymidine identification of embryonic neostriatal transplants, in “Cell and Tissue Transplantation into the Adult Brain”, Volume 495 (E.C. Azmitia and A. Bjorklund, eds.), pp. 745–748, Annals of the N. Y. Academy of Sciences, New York.

    Google Scholar 

  • McAllister, J.P., Kaplan, L., and Reynolds, M.C., 1984, Morphology and connectivity of fetal neostriatal tissue transplanted into the neostriatum of adult hosts, Anat. Rec. 208:107A.

    Google Scholar 

  • McAllister, J.P., Walker, P.D., Zemanick, M.C., Weber, A.B., Kaplan, L.I., and Reynolds, M.C., 1985, Morphology of embryonic neostriatal cell suspensions transplanted into adult neostriata, Develop. Brain Res. 23:282–286.

    Article  Google Scholar 

  • McBean, C.J., and Roberts, P.J., 1985, Neurotoxicity of L-glutamate and DL-threo-3-hydroxyaspartate in the rat striatum, J. Neurochem. 44:246–254.

    Article  Google Scholar 

  • McGeer, P.L., and McGeer, E.G., 1976a, Enzymes associated with the metabolism of cate- cholamines, acetylcholine and GABA in human controls and patients with Parkinson’s disease and Huntington’s chorea, J. Neurochem. 26:65–76.

    PubMed  CAS  Google Scholar 

  • McGeer, E.G., and McGeer, P.L., 1976b, Duplication of biochemical changes of Huntington’s chorea by intrastriatal injections of glutamic and kainic acids, Nature 263:517–519.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, P.L., and McGeer, E.G., 1982, Kainic acid: The neurotoxic breakthrough, CRC Crit. Rev. Toxicol. 10:1–26.

    Article  CAS  Google Scholar 

  • McGeer, P.L., McGeer, E.G., and Fibiger, H.C., 1973, Choline acetylase and glutamic acid decarboxylase in Huntington’s chorea, Neurology 23:912–917.

    Article  PubMed  CAS  Google Scholar 

  • McGeer, E.G., McGeer, E.G., Hattori, T., and Vincent, S.R., 1979, Kainic acid neurotoxicity and Huntington’s disease, Adv. Neurol. 23:577–591.

    CAS  Google Scholar 

  • McGeer, P.L., Kimura, H., and McGeer, E.G. 1984, Transplantation of newborn brain tissue into adult kainic-acid-lesioned neostriatum, in “Neural Transplants” (J.R. Sladek and D.J. Gash, eds.), pp. 361–371, Plenum Press, New York.

    Chapter  Google Scholar 

  • McGeer, P.L., Eccles, J.C., and McGeer, E.G., (eds.), 1987, “Molecular Neurobiology of the Mammalian Brain”, Plenum Press, New York.

    Google Scholar 

  • McHugh, P.R., and Folstein, M.F., 1975, Psychiatric syndromes of Huntington’s chorea: A clinical and phenomenologic study, in “Psychiatric Aspects of Neurologic Disease” (F. Benson and D. Blumer, eds.), pp. 267–281, Grune and Stratton, New York.

    Google Scholar 

  • McIntosh, G.E., Jameson, D., and Markesbury, W.R., 1978, Huntington’s disease associated with Alzheimer’s disease, Ann. Neurol. 3:545–548.

    Article  PubMed  CAS  Google Scholar 

  • Melamed, E., Hefti, F., and Bird, E.D., 1982, Huntington’s chorea is not associated with hyperactivity of dopaminergic neurons: Studies in post-mortem tissues and rats with kainic acid lesions, Neurology 33:640–644.

    Article  Google Scholar 

  • Meyer, D.K., Beinfeld, M.C., Oertel, W.H., and Brownstein, M.J., 1982, Origin of the cholecystokinin-containing fibers in the caudatoputamen, Science 215:187–188.

    Article  PubMed  CAS  Google Scholar 

  • Moore, R.Y., and Card, J.P., 1984, Noradrenaline-containing neuron systems, in “Handbook of Chemical Neuroanatomy, Classical Transmitters in the CNS,” Part I. (A. Bjorklund and T. Hokfelt, eds.), pp. 123–156, Elsevier, Amsterdam.

    Google Scholar 

  • Mroz, E.A., Brownstein, M.J., and Leeman, S.E., 1977, Evidence for substance P in the striatonigral tract, Brain Res. 125:305–311.

    Article  PubMed  CAS  Google Scholar 

  • Muller, H.W., and Seifert, W.A., 1982, A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons, J. Neurosci. Res. 8:195–204.

    Article  PubMed  CAS  Google Scholar 

  • Neito-Sampedro, M., and Cotman, C.W., 1985, Growth factor induction and temporal order in CNS repair, in “Synaptic Plasticity” (C.W. Cotman, ed.), pp. 407–455, Guilford Press, New York.

    Google Scholar 

  • Norman, A.B., McGowan, T., Calderon, S.F., Giordano, M., and Sanberg, P.R., 1987, Attenuation of apomorphine-induced rotational behavior by fetal striatal tissue transplants in rats with unilateralstriatal kainic acid lesions, Soc. Neurosci. Abstr. 13:785.

    Google Scholar 

  • Norman, A.B., Calderon, S.F., Giordano, M., and Sanberg, P.R., 1988a, Striatal tissue transplants attenuate apomorphine-induced rotational behavior in rats with unilateral kainic acid lesions, Neuropharmacology 27:333–336.

    Article  PubMed  CAS  Google Scholar 

  • Norman, A.B., Calderon, S.F., Giordano, M., and Sanberg, P.R., 1988b, A novel rotational behavior model for assessing the restructuring of striatal dopamine effector systems: Are transplants sensitive to peripherally acting drugs?, in “Transplantation into the Mammalian CNS” (D.M. Gash and J.R. Sladek, eds.), pp. 61–67, Elsevier, Amsterdam.

    Google Scholar 

  • Norman, A.B., Giordano, M., and Sanberg, P.R., 1989a, Fetal striatal tissue grafts into excitotoxin-lesioned striatum: Pharmacological and behavioral aspects, Pharmacol. Biochem. Behav. 34:139–147.

    Article  PubMed  CAS  Google Scholar 

  • Norman, A.B., Lehman, M., and Sanberg, P.R., 1989b, Functional effects of fetal striatal transplants, Brain Res. Bull. 22:163–172.

    Article  PubMed  CAS  Google Scholar 

  • Norman, A.B., Ford, L.M., Kolmonpunporn, M., and Sanberg, P.R., 1990, Chronic treatment with MK-801 increases the quinolinic acid-induced loss of D-1 dopamine receptors in rat striatum, Eur. J. Pharmacol. 176:363–366.

    Article  PubMed  CAS  Google Scholar 

  • Oka, H., 1980, Organization of the cortico-caudate projections, Exp. Brain Res. 40:203–208.

    Article  PubMed  CAS  Google Scholar 

  • Okuno, E., Kohler, C., and Schwarcz, R., 1987, Rat-3-hydroxyanthranlic acid oxygenase: purification from the liver and immunocytochemical localization in the brain, J. Neurochem. 49:771–780.

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W., and de Gubareff, T., 1978, Glutamate neurotoxicity and Huntington’s chorea, Nature 271:557–559.

    Article  PubMed  CAS  Google Scholar 

  • Oyanagi, K., and Ikuta, F.A., 1987, A morphometric reevaluation of Huntington’s chorea with special reference to the large neurons of the neostriatum, Clin. Neuropathol. 6:71–79.

    PubMed  CAS  Google Scholar 

  • Oyanagi, K., Takeda, S., Takahashi, J., Ohama, E., and Ikuta, F., 1989, A quantitative investigation of the substantia nigra in Huntington’s disease, Ann. Neurol. 26:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J.M., Rigo, M., Chinaglia, G., and Probst, A., 1990, Reduced density of striatal somatostatin receptors in Huntington’s chorea, Brain Res. 522:342–346.

    Article  PubMed  CAS  Google Scholar 

  • Palacios, J.M., Chinaglia, G., Rigo, M., Ulrich, J., and Probst, A., 1991, Neurotensin receptor binding levels in basal ganglia are not altered in Huntington’s chorea or schizophrenia, Synapse 7:114–122.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T.L., Hansen, S., and Kloster, M., 1973, Huntington’s chorea: Deficiency of GABA in brain, N. Engl. J. Med. 288:337–342.

    Article  PubMed  CAS  Google Scholar 

  • Pillon, B., Dubois, B., Ploska, A., and Agid, Y., 1991, Severity and specificity of cognitive impairment in Alzheimer’s, Huntington’s, and Parkinson’s diseases and progressive supra-nuclear palsy, Neurology 41:634–643.

    Article  PubMed  CAS  Google Scholar 

  • Pinel, C., 1976, Huntington’s chorea, Nurs. Times 72:447.

    PubMed  CAS  Google Scholar 

  • Pisa, M., Sanberg, P.R., and Fibiger, H.C., 1980, Locomotor activity, exploration and spatial alternation learning in rats with striatal injections of kainic acid, Physiol. Behav. 24:1120.

    Article  Google Scholar 

  • Pisa, M., Sanberg, P.R., and Fibiger, H.C., 1981, Striatal injections of kainic acid selectively impair serial memory performance in the rat, Exp. Neurol. 74:633–653.

    Article  PubMed  CAS  Google Scholar 

  • Podoll, K., Caspary, P., Lange, H.W., and Noth, J., 1988, Language functions in Huntington’s disease, Brain 111:1475–1503.

    Article  PubMed  Google Scholar 

  • Pritzel, M., Isacson, O., Brundin, P., Wiklund, L., and Bjorklund, A., 1986, Afferent and efferent connections of striatal grafts implanted into the ibotenic lesioned neostriatum in adult rats, Exp. Brain Res. 65:112–126.

    Article  PubMed  CAS  Google Scholar 

  • Randolph, C., 1991, Implicit, explicit, and semantic memory functions in Alzheimer’s disease and Huntington’s disease, J. Clin. and Exp. Neuropsychol. 13(4):479–494.

    Article  CAS  Google Scholar 

  • Reed, T.E., and Chandler, J.H., 1958, Huntington’s chorea in Michigan. I: Demography and genetics, Am. J. Hum. Genet. 10:201–225.

    PubMed  CAS  Google Scholar 

  • Reiner, A., Albin, D.L., Anderson, K.D., D’Amato, C.J., Penny, J.B., and Young, A.B., 1988, Differential loss of striatal projection neurons in Huntington’s disease, Proc. Natl. Acad. Sci. U.S.A. 85:5733–5737.

    Article  PubMed  CAS  Google Scholar 

  • Reisine, T.D., Fields, J.Z., Stern, L.Z., Johnson, P.C., Bird, E.D., and Yamamura, H.I., 1977, Alterations in dopaminergic receptors in Huntington’s disease, Life Sci. 21:1123–1128.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, G.P., Pearson, S.J., Halket, J., and Sandler, M., 1988, Brain quinolinic acid in Huntington’s disease, J. Neurochem. 50:1959–1960.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, G.P., Pearson, S.J., and Heathfield, K.W.G., 1990, Dementia in Huntington’s disease is associated with neurochemical deficits in the caudate nucleus, not the cerebral cortex, Neurosci. Lett. 113:95–100.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, K.J., Joyce, J.N., Sapp, D.W., and Marshall, J.F., 1987, [3H]hemicholinium-3 binding in rabbit striatum: Correspondence with patchy acetylcholinesterase staining and a method for quantifying striatal compartments, Brain Res. 412:400–404.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R.C., and DiFiglia, M., 1989, Short- and long-term survival of large neurons in the excitotoxic lesioned rat caudate nucleus: A light and electron microscopic study, Synapse 3:363–371.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R.C., and DiFiglia, M., 1990, Long-term survival of GABA-, enkephalin-, NADPH-diaphorase- and calbindin-d28k-containing neurons in fetal striatal grafts, Brain Res. 532:151–159.

    Article  PubMed  CAS  Google Scholar 

  • Rodda, R.A., 1981, Cerebellar atrophy in Huntington’s disease, J. Neural. Sci. 50:147.

    Article  CAS  Google Scholar 

  • Roizen, L., Kaufman, M.A., Wilson, W., Stellar, S., and Liu, J.C., 1976, Neuropathologic observations in Huntington’s chorea, Prog. Neuropathol. 3:447.

    Google Scholar 

  • Rutherford, A., Garcia-Munoz Dunnett, S.B., and Arbuthott, G.W., 1987, Electrophysiological demonstration of host cortical inputs to striatal grafts, Neurosci. Lett. 83:275–281.

    Article  PubMed  CAS  Google Scholar 

  • Saint-Cyr, J. A., Taylor, A.E., and Lang, A.E., 1988, Procedural learning and neostriatal dysfunction in man, Brain 111:941–959.

    Article  PubMed  Google Scholar 

  • Salmon, D.P., Kwoon-Yeun, P.F., Heindel, W.C., Butters, N., and Thal, L.J., 1989, Differentiation of Alzheimer’s disease and Huntington’s disease with the dementia rating scale, Arch. Neurol. 46:1204–1208.

    Article  PubMed  CAS  Google Scholar 

  • Sanberg, P.R., 1980, Haloperidol-induced catalepsy is mediated by postsynaptic dopamine receptors, Nature 284:472–473.

    Article  PubMed  CAS  Google Scholar 

  • Sanberg, P.R., and Coyle, J.T., 1984, Scientific approaches to Huntington’s disease, CRC Crit. Rev. Clin. Neurobiol. 1:1–44.

    PubMed  CAS  Google Scholar 

  • Sanberg, P.R., and Creese, I., 1981, Dopamine receptor stimulation and striatal kainic acid neuro-toxicity, J. Pharm. Pharmacol. 33:674–675.

    Article  PubMed  CAS  Google Scholar 

  • Sanberg, P.R., and Fibiger, H.C., 1979, Body weight, feeding and drinking behaviors in rats with kainic acid lesions of striatal neurons, with a note on body weight symptomatology in Huntington’s disease, Exp. Neurol. 66:444–466.

    Article  PubMed  CAS  Google Scholar 

  • Sanberg, P.R., and Johnston, G.A., 1981, Glutamate and Huntington’s disease, Med. J. Aust. 2:460–465.

    PubMed  CAS  Google Scholar 

  • Sanberg, P.R., Lehmann, J., and Fibiger, H.C., 1978, Impaired learning and memory after kainic acid lesions of the striatum: A behavioral model of Huntington’s disease, Brain Res. 149:546–551.

    Article  PubMed  CAS  Google Scholar 

  • Sanberg, P.R., Pisa, M., and Fibiger, H.C., 1979, Avoidance operant and locomotor behavior in rats with neostriatal injections of kainic acid, Pharmacol. Biochem. Behav. 10:137–144.

    Article  PubMed  CAS  Google Scholar 

  • Sanberg, P.R., Fibiger, H.C., and Mark, R.R., 1981a, Body weight and dietary factors in Huntington’s disease patients compared with matched controls, Med. J. Aust. 1:407–409.

    PubMed  CAS  Google Scholar 

  • Sanberg, P.R., Pisa, M., and Fibiger, H.C., 1981b, Kainic acid injections in the striatum alter the cataleptic and locomotor effects of drugs influencing the dopaminergic and cholinergic systems, Eur. J. Pharmacol. 74:347–357.

    Article  PubMed  CAS  Google Scholar 

  • Sanberg, P.R., Hagenmeyer, S.H., and Henault, M.A., 1985, Automated measurement of multivariate locomotor behavior in rodents, Neurobehav. Toxicol. Teratol. 7:87–94.

    PubMed  CAS  Google Scholar 

  • Sanberg, P.R., Henault, M.A., Deckel, A.W., 1986, Locomotor hyperactivity: Effects of multiple striatal transplants in an animal model of Huntington’s disease, Pharmacol. Biochem. Behav. 25:297–300.

    Article  PubMed  CAS  Google Scholar 

  • Sanberg, P.R., Calderon, S.F., Garver, D.L., and Norman, A.B., 1987a, Brain tissue transplants in an animal model of Huntington’s disease, Psychopharmacol. Bull. 23:476–482.

    Google Scholar 

  • Sanberg, P.R., Henault, M.A., Hagenmeyer-Houser, S.H., and Russel, R.H., 1987b, The topography of amphetamine and scoplamine-induced hyperactivity: Toward an activity print, Behav. Neurosci. 101:131–133.

    Article  PubMed  CAS  Google Scholar 

  • Sanberg, P.R., Henault, M.A., Hagenmeyer-Houser, S.H., Giordano, M., and Russell, K.H., 1987c, Multiple transplants of fetal striatal tissue in the kainic acid model of Huntington’s disease: Behavioral recovery may not be related to acetylcholinesterase, in “Cell and Tissue Transplantation into the Adult Brain” (E.C. Azmitia and A. Bjorklund, eds.), pp. 781–785, Annals of the N.Y. Academy of Science New York.

    Google Scholar 

  • Sanberg, P.R., Nash, D.R., Calderon, S.F., Giordano, M., Shipley, M.T., and Norman, A.B., 1988, Neural transplants disrupt the blood-brain barrier and allow peripherally acting drugs to exert a centrally mediated behavioral effect, Exp. Neurol. 102:149–152.

    Article  CAS  Google Scholar 

  • Sanberg, P.R., Calderon, S.R., Giordano, M., Tew, J.M., and Norman, A.B., 1989a, The quinolinic acid model of Huntington’s disease: Locomotor abnormalities, Exp. Neurol. 105:45–53.

    Article  PubMed  CAS  Google Scholar 

  • Sanberg, P.R., Giordano, M., Henault, M.A., Nash, D.R., Ragozzino, M.E., and Hagenmeyer-Houser, S.H., 1989b, Intraparenchymal striatal transplants required for maintenance of behavioral recovery in an animal model of Huntington’s disease, J. Neurotransplant. 1:23–31.

    CAS  Google Scholar 

  • Sanberg, P.R., Zubrycki, E.M., Ragozzino, M.E., Lu, S.Y., Norman, A.B., and Shipley, M.T., 1990, NADPH-diaphorase-containing neurons and cytochrome oxidase activity following striatal quinolinic acid lesions and fetal striatal transplants, Prog. Brain Res. 82:427–431.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R.H., Bjorklund, A., and Stenevi, U., 1981, Intracerebral grafting of dissociated CNS tissue suspensions: A new approach for neuronal transplantation to deep brain sites, Brain Res. 218:347–356.

    Article  PubMed  CAS  Google Scholar 

  • Scholz, O.B., and Berlemann, C., 1987, Memory performances in Huntington’s disease, Int. J. Neurosci. 35:155–162.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., and Kohler, C., 1983, Differential vulnerability of central neurons of the rat to quinolinic acid, Neurosci. Lett. 38:85–90.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., and Shoulson, I., 1987, Excitotoxins and Huntington’s disease, in “Animal Models of Dementia: A Synaptic Neurochemical Perspective” (J.T. Coyle, ed.), pp. 39–68, Alan R. Liss, New York.

    Google Scholar 

  • Schwarcz, R., Ruxe, K., Agnati, L.F., Hokfelt, T, and Coyle, J.T, 1979, Rotational behavior in rats with unilateral striatal kainic acid lesions: A behavioral model for studies of intact dopamine receptors, Brain Res. 170:485–495.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., Whetsell, W.O., Jr., and Mangano, R.M., 1983, Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in rat brain, Science 219:316–318.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., Foster, A.C., French, E.D., Whetsell, W.O., and Kohler, C., 1984, Excitotoxic models for neurodegenerative disorders, Life Sci. 35:19–32.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., Okono, E., and White, R.J., 1989, Basal ganglia lesions in the rat: effects on quinolinic acid metabolism, Brain Res. 490:103–109.

    Article  PubMed  CAS  Google Scholar 

  • Segovia, J., Meloni, R., and Gale, K., 1989, Effect of dopaminergic denervation and transplant-derived reinnervation on a marker of striatal GABAergic function, Brain Res. 493:185–189.

    Article  PubMed  CAS  Google Scholar 

  • Shoulson, I., 1986, Huntington’s disease, in “Disease of the Nervous System” (A. Asbury, G.M. McKhann, and I. McDonald, eds.), pp. 1258–1267, Ardmore Medical Books (W.B. Saunders), Philadelphia.

    Google Scholar 

  • Sirinathsinghji, D.J.S., Dunnett, S.B., Isacson, O., Clarke, D.J., Kendrick, K., and Bjorklund, A., 1988, Striatal grafts in rats with unilateral neostriatal lesions. II: In vivo monitoring of GABA release in globus pallidus and substantia nigra, Neuroscience 24:803–811.

    Article  PubMed  CAS  Google Scholar 

  • Sladek, J.R., Redmond, D.E., Collier, T.J., Bount, J.P., Elsworth, J.R., Taylor, J.R., and Roth, R.H., 1988, Fetal dopamine neural grafts: Extended reversal of methylphenyltetrahydropyridine-induced parkinsonism in monkeys, Prog. Brain Res. 78:497–506.

    Article  PubMed  Google Scholar 

  • Sortrel, A., Paskevich, P.A., Kiely, D.K., Bird, E.D., Williams, R.S., and Myers, R.H., 1991, Morphometric analysis of the prefrontal cortex in Huntington’s disease, Neurology 41:1117–1123.

    Article  Google Scholar 

  • Spokes, E.G.S., 1980, Neurochemical alterations in Huntington’s chorea: A study of post-mortem brain tissue, Brain 103:179–210.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, W.L., and Swanson, P.D., 1974, Biochemical abnormalities in Huntington’s chorea brains, Neurology 24:813–819.

    Article  PubMed  CAS  Google Scholar 

  • Staines, W.A., Nagy, J.I., Vincent, S.R., and Fibiger, H.C., 1980, Neurotransmitters contained in the striatum, Brain Res. 194:391–402.

    Article  PubMed  CAS  Google Scholar 

  • Starr, A., 1967, A disorder of rapid eye movements in Huntington’s chorea, Brain 90:545–564.

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch, H.W.M., 1984, Serotonin-immunoreactive neurons and their projections in the CNS, in “Handbook of Chemical Neuroanatomy, Classical Transmitters and Transmitter Receptors in CNS,” Part II, Volume 3 (A. Bjorklund, T. Hokfelt, and M.J. Kuhar, eds.), pp. 68–125, Elsevier, Amsterdam.

    Google Scholar 

  • Stromberg, I., Herrera-Marschitz, M., Ungerstedt, U., Ebendal, T., and Olson, L., 1985, Chronic implants of chromaffin tissue into the dopamine-denervated striatum: Effects of NGF on graft survival fiber growth and rotational behavior, Exp. Brain Res. 60:335–349.

    Article  PubMed  CAS  Google Scholar 

  • Susel, Z., Engber, T.M., Kuo, S., and Chase, T.N., 1991, Prolonged infusion of quinolinic acid into rat striatum as an excitotoxic model of neurodegenerative disease, Neurosci. Lett. 121:234–238.

    Article  PubMed  CAS  Google Scholar 

  • Van Putten, T., and Menkes, J.H., 1973, Huntington’s disease masquerading as chronic schizophrenia, Dis. Nerv. Syst. 34:54–56.

    PubMed  Google Scholar 

  • Vincent, S.R., Hokfelt, T., Christensson, I., and Terenius, L., 1982, Immunohistochemical evidence for a dynorphin immunoreactive striatonigral pathway, Eur. J. Pharmacol. 85:251–252.

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel, J-P., Myers, R.H., and Stevens, T.J., 1985, Neuropathological classification of Huntington’s disease, J. Neuropathol. Exp. Neurol. 44:559–577.

    Article  PubMed  CAS  Google Scholar 

  • Waeber, C., and Palacios, J.M., 1989, Serotonin-1 receptor binding sites in the human basal ganglia are decreased in Huntington’s chorea but not in Parkinson’s disease: A quantitative in vitro autoradiography study, Neuroscience 32(2):337–347.

    Article  PubMed  CAS  Google Scholar 

  • Walker, P.D., and McAllister, J.P., 1987, Minimal connectivity between neostriatal transplants and the host brain, Brain Res. 425:34–44.

    Article  PubMed  CAS  Google Scholar 

  • Walker, P.D., Chovanes, G.I., and McAllister, J.P., 1987, Identification of acetyl cholinesterase-reactive neurons and neuropil in neostriatal transplants, J. Comp. Neurol. 259:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, J.P., Zhou, F.C., Hull, C.D., Fisher, R.S., Levine, M.S., and Buchwald, N.A., 1988, Physiological and morphological characterization of striatal neurons transplanted into adult rat striatum, Synapse 2:37–44.

    Article  PubMed  CAS  Google Scholar 

  • Wastek, G.J., Stern, L.Z., Johnson, O.C., and Yamamura, H.L., 1976, Huntington’s disease: Regional alterations in muscarinic cholinergic receptor binding in human brain, Life Sci. 19:1033–1040.

    Article  PubMed  CAS  Google Scholar 

  • Wastek, G.J., and Yamamura, H.I., 1978, Biochemical characterization of the muscarinic cholinergic receptor in human brain: Alterations in Huntington’s disease, Mol. Pharmacol. 14:768–774.

    PubMed  CAS  Google Scholar 

  • Whetsell, W.O., and Schwarcz, R., 1989, Prolonged exposure to submicromolar concentration of quinolinic acid causes excitotoxic damage in organotypic cultures of rat corticostriatal system, Neurosci. Lett. 97:271–275.

    Article  PubMed  CAS  Google Scholar 

  • Wictorin, K., and Bjorklund, A., 1989, Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum. II: Cortical afferents, Neuroscience 30:297–311.

    Article  PubMed  CAS  Google Scholar 

  • Wictorin, K., Isacson, O., Fischer, W., Nothias, F., Peschanski, M., and Bjorklund, A., 1988a, Studies on host afferent inputs to fetal striatal transplants in excitotoxically lesioned striatum, in “Transplantations into the Mammalian CNS: Progress in Brain Research,” Volume 78 (D.M. Gash and J.R. Sladek, eds), pp. 55–60, Elsevier, Amsterdam.

    Google Scholar 

  • Wictorin, K., Isacson, O., Fischer, W., Nothias, F., Peschanski, M., and Bjorklund, A., 1988b, Connectivity of striatal grafts implanted into the ibotenic acid lesioned striatum. I: Subcortical afferents, Neuroscience 27:547–562.

    Article  PubMed  CAS  Google Scholar 

  • Wictorin, K., Quimet, C.C., and Bjorklund, A., 1989a, Intrinsic organization and connectivity of intrastriatal transplants in rats as revealed by DARPP-32 immunohistochemistry: Specificity of connections with the lesioned host brain, Eur. J. Neurosci. 1:690–701.

    Article  PubMed  Google Scholar 

  • Wictorin, K., Clarke, D.J., Bolam, J.P., and Bjorklund, A., 1989b, Host corticostriatal fibres establish synaptic connections with grafted striatal neurons in the ibotenic acid lesioned striatum, Eur. J. Neurosci. 1:189–195.

    Article  PubMed  Google Scholar 

  • Wictorin, K., Simerly, R.B., Isacson, O., Swanson, L.W., and Bjorklund, A., 1989c, Connectivity of striatal grafts implanted into the ibotenic acid lesioned striatum. III: Efferent projecting graft neurons and their relation to host afferents within the grafts, Neuroscience 30:313–330.

    Article  PubMed  CAS  Google Scholar 

  • Wictorin, K., Lagenaur, C.F., Lund, R.D., and Bjorklund, A., 1990, Efferent projections to the host brain from intrastriatal striatal mouse-to-rat grafts: Time-course and tissue-type specificity as revealed by a mouse-specific neuronal marker, Eur. J. Neurosci. 3:86–101.

    Article  Google Scholar 

  • Wilson, C.J., Emson, P., and Feles, C., 1987, Electrophysiological evidence for the formation of corticostriatal pathway in neostriatal tissue grafts, Soc. Neurosci. Abstr. 13:79.

    Google Scholar 

  • Wong, E.H.F., Kemp, J.A., Priestly, T., Knight, A.R., Woodruff, G.N., and Iversen, L.L., 1986, The anticonvulsant MK-801 is a potent N-methyl-D-aspartated antagonist, Proc. Natl. Acad. Sci. U.S.A. 83:7104–7108.

    Article  PubMed  CAS  Google Scholar 

  • Wong, P.T.-H., Singh, U.K., and McGeer, E.G., 1982, Ornithine aminotransferase in Huntington’s disease, Brain Res. 231:466–471.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Z.C., Wilson, C.J., and Emson, P.C., 1991a, Restoration of thalamostriatal projections in rat neostriatal grafts: An electron microscopic analysis, J. Comp. Neurol. 303:22–34.

    Article  PubMed  CAS  Google Scholar 

  • Xu, Z.C., Wilson, C.J., and Emson, P.C., 1991b, Synaptic potentials evoked in spiny neurons in rat neostriatal grafts by cortical and thalamic stimulation, J. Neurophysiol. 65(3):477–493.

    PubMed  CAS  Google Scholar 

  • Yamada, K., Fuji, K., Nsbeshima, T., and Kameyama, T, 1990, Neurotoxicity induced by continuous infusion of quinolinic acid into the lateral ventricle in rats, Neurosci. Lett. 118:128–131.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H.-Y.T., Panula, P., Tang, J., and Costa, E., 1983, Characterization and localization of Met5-enkephalin-Arg6-Phe stored in various rat brain regions, J. Neurochem. 40:969–976.

    Article  PubMed  CAS  Google Scholar 

  • Young, A.B., Shoulson, I., Penny, J.B., Starosta-Rubenstein, S., Gomez, F., Travers, H., Ramos, M., Snodgrass, S.R., Bonilla, A., Moreno, H., and Wexler, N., 1986, Huntington’s disease in Venezuela: Neurological features and functional decline, Neurology 36:244–249.

    Article  PubMed  CAS  Google Scholar 

  • Young, A.B., Greenamyre, J.T., Hollingsworth, Z., Albin, R., D’Amato, C., Shoulson, I., and Penny, J.B., 1988, NMDA receptor losses in putamen from patients with Huntington’s disease, Science 241:981–983.

    Article  PubMed  CAS  Google Scholar 

  • Zaczek, R., Schwarcz, R., and Coyle, J.T., 1978, Long-term seqeulae of striatal kainate lesion, Brain Res. 152:626–632.

    Article  PubMed  CAS  Google Scholar 

  • Zemanick, M.D., Walker, P.D., and McAllister, J.P., 1987, Quantitative analysis of dendrites from transplanted neostriatal neurons, Brain Res. 414:149–152.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F.C., and Buchwald, N., 1989, Connectivities of the striatal grafts in adult rat brain: A rich afference and scant striatonigral efference, Brain Res. 504:15–30.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, F.C., Hull, C.D., Levine, M.S., and Buchwald, N.A., 1986, Host nigral fibers may grow into striatal neurons, Soc. Neurosci. Abstr. 12:1479.

    Google Scholar 

  • Zubrycki, E.W., Emerich, D.F., and Sanberg, P.R., 1990, Sex differences in regulatory changes following quinolinic acid-induced striatal lesions, Brain Res. Bull. 25:633–637.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Emerich, D.F., Cahill, D.W., Sanberg, P.R. (1994). Excitotoxic Lesions of the Neostriatum as an Animal Model of Huntington’s Disease. In: Woodruff, M.L., Nonneman, A.J. (eds) Toxin-Induced Models of Neurological Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1447-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1447-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1449-1

  • Online ISBN: 978-1-4899-1447-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics