Skip to main content

6-Hydroxydopamine Lesions of Nigrostriatal Neurons as an Animal Model of Parkinson’s Disease

  • Chapter
Toxin-Induced Models of Neurological Disorders

Abstract

Parkinson’s disease (PD) is a uniquely human affliction that profoundly affects all aspects of daily living as it progresses. In addition to the obvious and characteristic physical disability the sufferer displays to an outside observer, it is becoming increasingly evident that the inner worlds of emotion and thought can also be devastated during the advance of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian, G.K., and Bunney, B.S., 1977, Dopamine “autoreceptors”: Pharmacological characterization by microiontophoretic single cell recording studies, Naunym Schmiedebergs Arch. Exp. Pathol. Pharmak. 297:1–7.

    Article  CAS  Google Scholar 

  • Agid, Y., Javoy, F., and Glowinski, J., 1973, Hyperactivity of remaining dopaminergic neurons after partial destruction of the nigro-striatal dopaminergic system in the rat, Nature 245:150–151.

    Article  CAS  Google Scholar 

  • Agid, Y., Bonnett, A.M., Ruberg, M., and Javoy-Agid, F., 1985, Pathophysiology of levodopa induced abnormal involuntary movements, in “Dyskinesia, Research and Treatment: Psychopharmacology,” Supplementum 2 (D. Casey, T.N. Chase, J. Christensen, and J. Gerlach, eds.), pp. 145–159, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Agid, Y., Javoy-Agid, F., and Ruberg, M., 1987, Biochemistry of transmitters in Parkinson’s disease, in “Movement Disorders” (Vol. 2, C.D. Marsden and S. Fahn, eds.), pp. 166–230, Butterworth, London.

    Google Scholar 

  • Andén, N.E., Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.A., and Larsson, K., 1964, Demonstration and mapping of nigro-neostriatal dopamine neurons, Life Sci. 3:523–530.

    Article  PubMed  Google Scholar 

  • Andén, N.E., Dahlström, A., Fuxe, K., and Larsson, K., 1966, Functional role of the nigro-neostriatal dopamine neurons, Acta Pharmacol. Toxicol. 24:263–274.

    Article  Google Scholar 

  • Annett, L.E., Rogers, D.C., Hernandez, T.D., and Dunnett, S.B., 1992, Behavioural analysis of unilateral dopamine depletion in the marmoset, Brain, 115:825–856.

    Article  PubMed  Google Scholar 

  • Antelman, S.M., Szechtman, H., Chin, P., and Fisher, A.E., 1975, Tail pinch-induced eating, gnawing and licking behavior in rats: Dependence on the nigrostriatal dopamine system, Brain Res. 99:319–337.

    Article  PubMed  CAS  Google Scholar 

  • Arendt, T., Bigl, V, Tennstedt, A., and Arendt, A., 1985, Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer’s disease, Neuroscience 14:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Artieda, J., Pastor, M.A., Lacruz, F., and Obeso, J.A., 1992, Temporal discrimination is abnormal in Parkinson’s disease, Brain 115:199–210.

    Article  PubMed  Google Scholar 

  • Aubert, I., Araujo, D.M., Cecyre, D., Robitaille, Y., Gauthier, S., and Quirion, R., 1992, Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases, J. Neurochem. 58:529–541.

    Article  PubMed  CAS  Google Scholar 

  • Bartus, R.T., Dean, R.L., Beer, B., and Lippa, A.S., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science 217:408–417.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten, H.G., Björklund, A., and Lachenmayer, L., 1983, Evaluation of the effects of 5,7-dihydroxytryptamine on serotonin and catecholamine neurons in the rat CNS, Acta Physiol. Scand. Suppl. 391:1–19.

    Google Scholar 

  • Bell, L.J., Iversen, L.L., and Uretsky, N.J., 1970, Time course of the effects of 6-hydroxydopamine on catecholamine-containing neurons in rat hypothalamus and striatum, Br. J. Pharmacol. 40:790–799.

    Article  PubMed  CAS  Google Scholar 

  • Benecke, R., Rothwell, J.C., Dick, J.P.R., Day, B.L., and Marsden, C.D., 1987, Disturbance of sequential movements in patients with Parkinson’s disease, Brain 110:361–379.

    Article  PubMed  Google Scholar 

  • Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., and Seitelberger, F., 1973, Brain dopamine and the syndromes of Parkinson and Huntington: Clinical, morphological and neurochemical correlations, J. Neurol. Sci. 20:415–455.

    Article  PubMed  CAS  Google Scholar 

  • Birkmayer, W., and Hornykiewicz, O., 1961, Der L-dioxyphenylalanin (=L-dopa) effekt bei der Parkinson-akinese, Wien. Klin. Wochenschr. 73:787.

    PubMed  CAS  Google Scholar 

  • Blocq, P., and Marinesco, G., 1893, Sur un cas de tremblement parkisonien hemiplegique: Symptomatique d’une tumeur du pedoncule cerebral, C.R. Soc. Biol. (Paris) 5:105–111.

    Google Scholar 

  • Bloom, F.E., Algeria, S., Gropetti, S., Revuelta, A., and Costa E., 1969, Lesions of central norepinephrine terminals with 6-OH-dopamine: Biochemistry and fine structure, Science 166:1284–1286.

    Article  PubMed  CAS  Google Scholar 

  • Bloxham, C.A., Mindel, T.A., and Frith, C.D., 1984, Initiation of predictable and unpredictable movements in Parkinson’s disease, Brain 107:371–384.

    Article  PubMed  Google Scholar 

  • Bloxham, C.A., Dick, D.J., and Moore, M., 1987, Reaction time and attention in Parkinson’s disease, Brain 107:371–384.

    Article  Google Scholar 

  • Bokobza, B., Ruberg, M., Scatton, B., Javoy-Agid, F., and Agid, Y., 1984, [3H] spiperone binding, dopamine and HVA concentrations in Parkinson’s disease and supranuclear palsy, Eur. J. Pharmacol. 99:167–175.

    Article  PubMed  CAS  Google Scholar 

  • Bracha, H.S., Shults, C., Glick, S.D., and Kleinman, J.E., 1987, Spontaneous asymmetric circling behavior in hemi-parkinsonism: A human equivalent of the lesioned-circling rodent behavior, Life Sci. 40:1127–1130.

    Article  PubMed  CAS  Google Scholar 

  • Breese, G.R., and Traylor, T.D., 1970, Effect of 6-hydroxydopamine on brain norepinephrine and dopamine: Evidence for selective degeneration of catecholamine neurons, J. Pharmacol. Exp. Ther. 174:413–420.

    PubMed  CAS  Google Scholar 

  • Brown, R.G., and Marsden, C.D., 1988, Internal versus external cues and the control of attention in Parkinson’s disease, Brain 111:23–45.

    Article  Google Scholar 

  • Brown, V.J., and Robbins, T.W., 1989, Elementary processes of response selection mediated by distinct regions of the striatum, J. Neurosci. 9:3760–3765.

    PubMed  CAS  Google Scholar 

  • Brown, V.J., and Robbins, T.W., 1991, Simple and choice reaction time performance following unilateral striatal dopamine depletion in the rat: Impaired motor readiness but preserved response preparation, Brain 114:513–525.

    Article  PubMed  Google Scholar 

  • Burns, R.S., Chiueh, C.C., Markey, S.P., Ebert, M.H., Jacobowitz, D.M., and Kopin, I.J., 1983, A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 80:4546–4550.

    Article  PubMed  CAS  Google Scholar 

  • Carey, R.J., 1986, Conditioned rotational behavior in rats with unilateral 6-hydroxydopamine lesions of the substantia nigra, Brain Res. 365:379–382.

    Article  PubMed  CAS  Google Scholar 

  • Carli, M., Evenden, J.L., and Robbins, T.W., 1985, Depletion of unilateral striatal dopamine impairs initiation of contralateral actions and not sensory attention, Nature 313:679–682.

    Article  PubMed  CAS  Google Scholar 

  • Carli, M., Jones, G.H., and Robbins, T.W., 1989, Effects of unilateral dopamine depletion from the dorsal and ventral striatum on visual neglect in the rat: A neural and behavioural analysis, Neuroscience 29:309–327.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., 1959, The occurrence, distribution and physiological role of catecholamines in the nervous system, Pharmacol. Rev. 11:490–493.

    PubMed  CAS  Google Scholar 

  • Carlsson, A., Lindqvist, M., and Magnusson, T., 1957, 3,4-dihydroxytryptamine and 5-hydroxytryptophan as reserpine antagonists, Nature 180:1200.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., Kehr, W., Lindquist, M., Magnusson, T., and Atack, C.V., 1972, Regulation of monoamine metabolism in the central nervous system, Pharmacol. Rev. 24:371–384.

    PubMed  CAS  Google Scholar 

  • Carman, L.S., Gage, F.H., and Shults, C.W., 1991, Partial lesion of the substantia nigra: Relation between extent of lesion and rotational behaviour, Brain Res. 553:275–283.

    Article  PubMed  CAS  Google Scholar 

  • Casas, M., Ferre, S., Cobos, A., Cadafalch, J., Grau, J.M., and Jane, F., 1988, Comparison between apomorphine and amphetamine-induced rotational behaviour in rats with a unilateral nigrostriatal pathway lesion, Neuropharmacology 27:657–659.

    Article  PubMed  CAS  Google Scholar 

  • Cash, R., Dennis, T., L’Heureux, Raisman, R., Javoy-Agid F., and Scatton, B., 1987, Parkinson’s disease and dementia—norepinephrine and dopamine in locus ceruleus, Neurology 37:42–46.

    Article  PubMed  CAS  Google Scholar 

  • Chase, T.N., 1972, Parkinson’s disease—modification by 5-hydroxytryptophan, Neurology 22:479–484.

    Article  PubMed  CAS  Google Scholar 

  • Chase, T.N., 1974, Serotoninergic mechanisms and extrapyramidal function in man, Adv. Neurol. 5:31–39.

    PubMed  CAS  Google Scholar 

  • Chiueh, C.C., 1988, Dopamine in the extrapyramidal motor function: A study based upon the MPTP-induced primate model of parkinsonism, Ann. N.Y. Acad. Sci. 515:226–238.

    Article  PubMed  CAS  Google Scholar 

  • Colle, L.M., and Wise, R.A., 1988, The nucleus accumbens contributes to the direction of dopamine-dependent circling, Soc. Neurosci. Abstr. 14:663.

    Google Scholar 

  • Cools, A.R., Scheenen, W., Eilam, D., and Golani, I., 1989, Evidence that apomorphine and (+)-amphetamine produce different types of circling in rats, Brain Res. 34:111–116.

    CAS  Google Scholar 

  • Cooper, B.R., Breese, G.R., Grant, L.D., and Howard, J.L., 1973, Effects of 6-hydroxydopamine treatments on active avoidance responding: Evidence for involvement of brain dopamine, J. Pharmacol. Exp. Ther. 185:358–370.

    PubMed  CAS  Google Scholar 

  • Cotzias, G.C., van Woert, M.H., and Schiffer, L.M., 1967, Aromatic amino acids and modification of Parkinsonism, N. Engl. J. Med. 276:374–379.

    Article  PubMed  CAS  Google Scholar 

  • Coyle, J.T., Price, D.L., and DeLong, M.R., 1983, Alzheimer’s disease: A disorder of cortical cholinergic innervation, Science 219:1184–1190.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I., Burt, D., and Snyder, S.H., 1977, Dopamine receptor binding enhancement accompanies lesion-induced behavioral supersensitivity, Science 197:596–598.

    Article  PubMed  CAS  Google Scholar 

  • Creese, I., and Snyder, S.H., 1979, Nigrostriatal lesions enhance striatal (3H) apomorphine and (3H) spiroperidol binding, Eur. J. Pharmacol 56:277–281.

    Article  PubMed  CAS  Google Scholar 

  • Critchley, M., 1953, “The Parietal Lobes,” Haffner, New York.

    Google Scholar 

  • Dankova, J., Bedard, P., Langelier, P., and Poirier, L.J., 1978, Dopaminergic agents and circling behaviour, Gen. Pharmacol. 9:295–302.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, J., Lloyd, K., Dankova, K., and Hornykiewicz, O., 1971, L-Dopa treatment in Parkinson’s disease: Effect on dopamine and related substances in discrete brain regions, Experientia 27:1048–1049.

    Article  PubMed  CAS  Google Scholar 

  • Drachman, D.A., and Sahakian, B.J., 1980, Memory, aging and pharmacosystems, in “The Psychobiology of Aging: Problems and Perspectives” (D. Stein, ed.), pp. 347–368, Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Dubois, B., Ruberg, M., Javoy-Agid, F., Ploska, A., and Agid, Y., 1983, A subcortico-cortical cholinergic system is affected in Parkinson’s disease, Brain Res. 288:213–218.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., and Björklund, A., 1983, Conditioned turning in rats: Dopaminergic involvement in the initiation of movement rather than the movement itself, Neurosci. Lett. 41:173–178.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., and Iversen, S.D., 1982, Sensorimotor impairments following localized kainic acid and 6-hydroxydopamine lesions of the neostriatum, Brain Res. 248:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Björklund, A., Stenevi, U., and Iversen, S.D., 1981, Behavioural recovery following transplantation of substantia nigra in rats subjected to 6-OHDA lesions of the nigrostriatal pathway. I: Unilateral lesions, Brain Res. 215:147–161.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., Everitt, B.J., and Robbins, T.W., 1991, The basal forebrain-cortical cholinergic system: Interpreting the functional consequences of excitotoxic lesions, Trends Neurosci. 14:494–501.

    Article  PubMed  CAS  Google Scholar 

  • Dunnett, S.B., and Robbins, T.W., 1992, The functional role of mesotelencephalic dopamine systems, Biol. Rev. 67:491–518.

    Article  PubMed  CAS  Google Scholar 

  • Ehringer, H., and Hornykiewicz, O., 1960, Verteilung von noradrenalin und dopamin (3-hydroxytyramin) im Gehirn des Menschen und ihr Verhalten bei Erkrankungen, Wien. Klin. Wochenschr. 38:1236–1239.

    Article  CAS  Google Scholar 

  • Evenden, J.L., and Robbins, T.W., 1984, Effects of unilateral 6-hydroxydopamine lesions of the caudate-putamen on skilled forepaw use in the rat, Behav. Brain Res. 14:61–68.

    Article  PubMed  CAS  Google Scholar 

  • Farley, I.J., and Hornykiewicz, O., 1976, Noradrenaline in subcortical brain regions of patients with Parkinson’s disease and control subjects, in “Advances in Parkinsonism (W. Birkmayer and O. Hornykiewicz, eds.), pp. 178–185, Roche, Basel.

    Google Scholar 

  • Faull, R.L.M., and Laverty, R., 1969, Changes in dopamine levels in the corpus striatum following lesions in the substantia nigra, Exp. Neurol. 23:332–340.

    Article  PubMed  CAS  Google Scholar 

  • Fearnley, J.M., and Lees, A.J., 1991, Ageing and Parkinson’s disease: Substantia nigra regional specificity, Brain 114:2283–2301.

    Article  PubMed  Google Scholar 

  • Feltz, P., and DeChamplain, J., 1972, Enhanced sensitivity of caudate neurons to microiontophoretic injections of dopamine in 6-hydroxydopamine treated rats, Brain Res. 43:601–605.

    Article  PubMed  CAS  Google Scholar 

  • Fibiger, H.C., Lonsbury, B., Cooper, H.P., and Lytle, L.D., 1972, Early behavioural effects of intraventricular administration of 6-hydroxydopamine in the rat, Nature 236:209–211.

    CAS  Google Scholar 

  • Fibiger, H.C., and Grewaal, D.S., 1974, Neurochemical evidence for denervation supersensitivity: The effect of unilateral substantia lesions on apomorphine-induced increases in neostriatalacetylcholine levels, Life Sci. 15:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Forno, L.S., 1982, Pathology of Parkinson’s disease, in “Movement Disorders” (CD. Marsden and S. Fahn, eds.), pp. 25–40, Butterworths, London.

    Google Scholar 

  • Gerfen, C.R., 1992, The neostriatal mosaic: Multiple levels of compartmental organization in the basal ganglia, Ann. Rev. Neurosci. 15:285–320.

    Article  PubMed  CAS  Google Scholar 

  • Gibb, W.R.G., and Lees, A.J., 1991, Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease, J. Neurol. Neurosurg. Psychiatry 54:388–396.

    Article  PubMed  CAS  Google Scholar 

  • Glick, S.D., Jerussi, T.P., and Fleisher, L.N., 1976, Turning in circles: The neuropharmacology of rotation, Life Sci. 18:889–896.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, M., Anagnoste, G., Battista, A.F., Owen, W.S., and Nakatani, S., 1969, Studies of amines in the striatum monkeys with nigral lesions, J. Neurochem. 16:645–653.

    Article  PubMed  CAS  Google Scholar 

  • Greenfield, J.G., 1955, The pathology of Parkinson’s disease, in “James Parkinson 1755–1824” (ed.), pp. 219–243, M. Critchley, Macmillan, London.

    Google Scholar 

  • Groves, P.M., Wilson, C.J., Young, S.J., and Rebec, G.V., 1975, Self-inhibition in dopamine neurons, Science 190:522–529.

    Article  PubMed  CAS  Google Scholar 

  • Guttman, M., Seeman, P., Reynolds, G.P., Riederer, P., Jellinger, K., and Tourtelotte, W.W., 1986. Dopamine D2 receptor density remains constant in treated Parkinson’s disease, Ann. Neurol. 19:487–492.

    Article  PubMed  CAS  Google Scholar 

  • Hagan, J.J., Alpert, J.E., Morris, R.G.M., and Iversen, S.D., 1983, The effects of central catecholamine depletions on spatial learning in rats, Behav. Brain Res. 9:83–104.

    Article  PubMed  CAS  Google Scholar 

  • Hefti, F., Melamed, E., and Wurtman, R.J., 1980, Partial lesions of the dopaminergic nigrostriatal system in rat brain: Biochemical characterization, Brain Res. 195:123–137.

    Article  PubMed  CAS  Google Scholar 

  • Heilman, K.M., Bowers, D., Watson, R.T., and Greer, M., 1976, Reaction time in Parkinson’s disease, Arch. Neurol. 33:139–140.

    Article  PubMed  CAS  Google Scholar 

  • Herman, J.P., Choulli, K., and Le Moal, M, 1985, Hyper-reactivity to amphetamine in rats with dopaminergic grafts, Exp. Brain Res. 60:521–526.

    Article  PubMed  CAS  Google Scholar 

  • Herman, J.P., Choulli, K., Abrous, N., and Le Moal, M., 1989, Intracerebral grafts of dopaminergic neurons: A discussion of their functional effects and mechanisms of action, in “Neuronal Grafting and Alzheimer’s Disease” (F. Gage, A. Privat, and Y. Christen, eds.), pp. 21–33, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Hökfelt, T., and Ungerstedt, U., 1973, Specificity of 6-hydroxydopamine induced degeneration of central monoamine neurones: An electron and fluorescence microscopic study with special reference to intracerebral injection on the nigro-striatal dopamine system, Brain Res. 60:269–297.

    Article  PubMed  Google Scholar 

  • Hollerman, J.R., and Grace, A.A., 1988, Nigral DA cell recruitment as a compensatory mechanism, Soc. Neurosci. Abstr. 14:116.

    Google Scholar 

  • Hornykiewicz, O., 1979, Compensatory biochemical changes at the striatal dopamine synapse in Parkinson’s disease—limitations of L-DOPA therapy, Adv. Neurol. 24:275–281.

    CAS  Google Scholar 

  • Hoyman, L., Weese, G.D., and Frommer, G.P., 1979, Tactile discrimination performance following neglect-producing unilateral lateral hypothalamic lesions in the rat, Physiol. Behav. 22:139–147.

    Article  PubMed  CAS  Google Scholar 

  • Iversen, L.L., Rogawski, M.A., and Miller, R.J., 1976, Comparison of the effects of neuroleptic drugs on pre- and postsynaptic dopaminergic mechanisms in the rat striatum, Mol. Pharmacol. 12:251–262.

    PubMed  CAS  Google Scholar 

  • Jacks, B.R., De Champlain, J., and Cordeau, J.P., 1972, Effects of 6-hydroxydopamine on putative transmitter systems in the central nervous system, Eur. J. Pharmacol. 18:353–360.

    Article  PubMed  CAS  Google Scholar 

  • Jellinger, K., 1986, Pathology of Parkinsonism, in “Recent Developments in Parkinson’s Disease” (S. Fahn, C.D. Marsden, P. Jenner, and P. Teychenn, eds.), pp. 33–66, Raven Press, New York.

    Google Scholar 

  • Jenner, P.D., and Marsden, C.D., 1986, The actions of l-methyl-4phenyl-1,2,3,6-tetra-hydropyridinein animals as a model of Parkinson’s disease. J. Neural Transm. Suppl. 20:11–39.

    PubMed  CAS  Google Scholar 

  • Kelly, P.H., and Moore, R.Y., 1976, Mesolimbic dopaminergic neurones in the rotational model of nigrostriatal function, Nature 263:695–696.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, R.S., and Wightman, R.M., 1987, Detection of dopamine overflow and diffusion with voltammetry in slices of rat brain, Brain Res. 423:79–87.

    Article  PubMed  CAS  Google Scholar 

  • Kopp, N., Denoroy, L., Thomasi, M., Gay, N., Chazot, G., and Renaud, B., 1982, Increase in noradrenaline synthesizing enzyme activity in medulla oblongata of Parkinson’s disease, Acta Neuropathol. 56:17–21.

    Article  PubMed  CAS  Google Scholar 

  • Koshikawa, N., Mori, E., Maruyama, Y., Yatsushige, N., and Kobayashi, M., 1990, Role of dopamine D1 and D2 receptors in the ventral striatum in the turning behaviour of rats, Eur. J. Pharmacol. 178:233–237.

    Article  PubMed  CAS  Google Scholar 

  • Kostowski, W., Samanin, R., Bareggie, S.R., Marc, V., Garratini, S., and Valzelli, L., 1974, Biochemical aspects of the interaction between midbrain raphe and locus ceruleus in the rat, Brain Res. 82:178–182.

    Article  PubMed  CAS  Google Scholar 

  • Kostrzewa, R.M., and Jacobowitz, D.M., 1974, Pharmacological actions of 6-hydroxydopamine, Pharamocol. Rev. 26:199–288.

    CAS  Google Scholar 

  • Krueger, B.K., Forn, J., Walters, J.R., Roth, R.H., and Greengard, P., 1976, Stimulation by dopamine of cyclic 3,5-monophospate formation in rat caudate nucleus: Effect of lesions of the nigo-neostriatal pathway, Mol. Pharmacol. 12:639–648.

    PubMed  CAS  Google Scholar 

  • Lalonde, R., 1987, Motor abnormalities in Weaver mutant mice, Exp. Brain Res. 65:479–481.

    Article  PubMed  CAS  Google Scholar 

  • Le Moal, M., and Simon, H., 1990, Mesocorticolimbic dopaminergic network: Functional and regulatory roles, Physiol. Rev. 71:155–234.

    Google Scholar 

  • Lee, T., Seeman, P., Rajput, A., Farley, I.J., and Hornykiewicz, O., 1978, Receptor basis for dopaminergic supersensitivity in Parkinson’s disease, Nature 273:59–60.

    Article  PubMed  CAS  Google Scholar 

  • Lloyd, K.G., 1976, Neurochemical compensation in Parkinson’s disease, in “Parkinson’s Disease: Concepts and Prospects (J.P. Laake, W.F. Korf, and J. Wesseling, eds.), pp. 61–72, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Luthman, J., Fredriksson, A., Sundström, E., Jonsson, G., and Archer, T., 1989, Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: Motor behavior and monoamine alterations at adult stage, Behav. Brain Res. 33:267–277.

    Article  PubMed  CAS  Google Scholar 

  • Mabry, P.D., and Campbell, B.A., 1973, Serotonergic inhibition of catecholamine-induced behavioral arousal, Brain Res. 49:381–391.

    Article  PubMed  CAS  Google Scholar 

  • Maloteaux, J.M., Lyabeya, M.K., Laterre, E.C., Javoy-Agid, F., Agid, Y., and Laduron, P.M., 1985, S2-serotonin receptors in frontal cortex of parkinsonian patients, J. Neurol. Suppl. 32:108.

    Google Scholar 

  • Marsden, C.D., 1984, Which motor disorder in Parkinson’s disease indicates the true motor function of the basal ganglia? in “Ciba Foundation Symposium 107: Functions of the Basal Ganglia,” pp. 225–237, Pitman, London.

    Google Scholar 

  • Marsden, C.D., and Parkes, J.D., 1976, “On-off” effects in patients with Parkinson’s disease on chronic levodopa therapy, Lancet i:292–296.

    Article  Google Scholar 

  • Marshall, J.F., Richardson, J.S., and Teitelbaum, P., 1974, Nigrostriatal bundle damage and the lateral hypothalamic syndrome, J. Comp. Physiol. Psychol. 87:808–830.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, J.F., Levitan, D., and Stricker, E.M., 1976, Activation-induced restoration of sensorimotor functions in rats with dopamine depleting brain lesions, J. Comp. Physiol. Psychol. 90:536–546.

    Article  PubMed  CAS  Google Scholar 

  • Mayeux, R., Stern, Y., Cote, L., and Williams, J.B.W., 1984, Altered serotonin metabolism in depressed patients with Parkinson’s disease, Neurology 34:642–646.

    Article  PubMed  CAS  Google Scholar 

  • Messier, C., Mrabet, O., and Destrade, C., 1990, Dopamine D1 and D2 agonists and antagonists produce turning when injected into the nucleus accumbens, Soc. Neurosci. Abstr. 15:1053.

    Google Scholar 

  • Miller, R., and Beninger, R. J., 1991, On the interpretation of asymmetries of posture and locomotion produced with dopamine agonists in animals with unilateral depletion of striatal dopamine, Prog. Neurobiol. 36:229–256.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, R.K., Gardner, E.L., Katzman, R., and Makman, M.H., 1974, Enhancement of dopamine-stimulated adenylate cyclase activity in rat caudate after lesions in substantia nigra: Evidence for degeneration supersensitivity, Proc. Natl. Acad. Sci. USA 71:3883–3887.

    Article  PubMed  CAS  Google Scholar 

  • Mishra, R.K., Marshall, A.M., and Varmuza, S.L., 1980 Supersensitivity in rat caudate nucleus: Effects of 6-hydroxydopamine on the time course of dopamine receptor and cyclic AMP changes, Brain Res. 200:47–57.

    Article  PubMed  CAS  Google Scholar 

  • Morgenroth, V.H. III, Walters, J.R., and Roth, R.H., 1976, Dopaminergic neurons: Alteration in the kinetic properties of tyrosine hydroxylase after cessation of impulse flow, Biochem. Pharmacol. 25:655–661.

    Article  PubMed  CAS  Google Scholar 

  • Muller, P., and Seeman, P., 1977, Brain neurotransmitter systems after long-term haloperidol: Dopamine, acetylcholine, serotonin, noradrenergic and naloxone receptors, Life Sci. 21:1751–1758.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu, T., Kanamori, T., Kato, T., Iizuka, R., and Narabayashi, H., 1978, Dopamine stimulated adenylate cyclase activity in the human brain changes in parkinsonism, Biochem. Med. 19:360–365.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, J.I., Lee, T., Seeman, P., and Fibiger, H.C., 1978, Direct evidence for presynaptic and postsynaptic dopamine receptors in brain, Nature 274:278–281.

    Article  PubMed  CAS  Google Scholar 

  • Nakano, I., and Hirano, A., 1984, Parkinson’s disease: Neuron loss in the nucleus basalis without concomitant Alzheimer’s disease, Ann. Neurol. 15:415–418.

    Article  PubMed  CAS  Google Scholar 

  • Nowycky, M.C., and Roth, R.H., 1978, Dopaminergic neurons: Role of presynaptic receptors in the regulation of transmitter biosynthesis, Prog. Neuropsychopharmacol. 2:139–158.

    Article  CAS  Google Scholar 

  • Ohye, C., Bouchard, R., Boucher, R., and Poirier, L.J., 1970, Spontaneous activity of the putamen after chronic interruption of the dopaminergic pathway: Effect of L-Dopa, J. Pharmacol. Exp. Ther. 175:700–708.

    CAS  Google Scholar 

  • Onn, S.P., Berger, T.W., Stricker, E.M., and Zigmond, M.J., 1986, Effects of intraventricular 6-hydroxydopamine on the dopaminergic innervation of striatum: Histochemical and neuro-chemical analysis, Brain Res. 376:8–19.

    Article  PubMed  CAS  Google Scholar 

  • Pastor, M.A., Artieda, J., Jahanshahi, M., and Obeso, J.A., 1992, Time estimation is abnormal in Parkinson’s disease, Brain 115:211–225.

    Article  PubMed  Google Scholar 

  • Perry, E.K., Curtis, M., Dick, D.J., Candy, J.M., Atack, J.R., Bloxham, C.A., Fairbairn, A., Tomlinson, B.E., and Perry, R.H., 1985, Cholinergic correlates of cognitive impairment in Parkinson’s disease: Comparisons with Alzheimer’s disease, J. Neurol. Neurosurg. Pyschiatry. 48:413–442.

    Article  CAS  Google Scholar 

  • Perry, E.K., Perry, R.H., Candy, R.M., Fairbairn, A.F., Blessed, G., Dick, D.J., and Tomlinson, B.E., 1984, Cortical serotonin-S2 receptor binding abnormalities in patients with Alzheimer’s disease: Comparisons with Parkinson’s disease, Neurosci. Lett. 51:353–357.

    Article  PubMed  CAS  Google Scholar 

  • Perry, T.L., Javoy-Agid, F., Agid, T., and Fibiger, H.C., 1983, Is striatal GABAegic neuronal activity reduced in Parkinson’s disease? J. Neurochem. 40:1120–1123.

    Article  PubMed  CAS  Google Scholar 

  • Pierot, L., Desnos, C., Blin, J., Raisman, R., Scherman, D., Javoy-Agid, F., Ruberg, M., and Agid, Y., 1988, D1 and D2-type dopamine receptors in patients with Parkinson’s disease and progressive supranuclear palsy, J. Neurol. Sci. 86:291–301.

    Article  PubMed  CAS  Google Scholar 

  • Pimoule, C., Schoemaker, H., Reynolds, G.P., and Langer, S.Z., 1985, [3H]SCH 23390 labeled D1 dopamine receptors are unchanged in schizophrenia and Parkinson’s disease, Eur. J. Pharmacol. 114:235–237.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, L.J., 1960, Experimental and histological study of midbrain dyskinesias, J. Neurophysiol. 23:534–551.

    PubMed  CAS  Google Scholar 

  • Price, M.T.C., and Fibiger, H.C., 1975, Discrimination escape learning and response to electric shock after 6-hydroxydopamine lesions of the nigro-neostriatal dopaminergic projection, Pharmacol Biochem. Behav. 3:285–290.

    Article  PubMed  CAS  Google Scholar 

  • Pycock, C.J., 1980, Turning behaviour in animals, Neuroscience 5:461–514.

    Article  PubMed  CAS  Google Scholar 

  • Pycock, C.J., and Marsden, C.D., 1978, The rotating rat: A two-component system? Eur. J. Pharmacol. 47:167–175.

    Article  PubMed  CAS  Google Scholar 

  • Raisman, R., Cash, R., Ruberg, M., Javoy-Agid, F., and Agid, Y., 1985, Binding of [3H]SCH 23390 to D-1 receptors in the putamen of control and parkinsonian subjects, Eur. J. Pharmacol. 113:467–468.

    Article  PubMed  CAS  Google Scholar 

  • Rajput, A.H., Rozdilsky, B., Hornykiewicz, O., Shannak, K., Lee, T., and Seeman, P., 1982, Reversible drug-induced parkinsonism: Clinicopathologic study of two cases, Arch. Neurol. 39:644–646.

    Article  PubMed  CAS  Google Scholar 

  • Ranje, C., and Ungerstedt, U., 1977, Lack of acquisition of dopamine denervated animals tested in an underwater maze, Brain Res. 134:95–111.

    Article  PubMed  CAS  Google Scholar 

  • Redmond, D.E., Jr., Hinrichs, R.L., Maas, J.W., and Kling, A., 1973, Behavior of free-ranging macaques after intraventricular 6-hydroxydopamine, Science 181:1256–1258.

    Article  PubMed  CAS  Google Scholar 

  • Reisine, T.D., Fields, J.Z., Yamamura, H.I., Bird, E.D., Spokes, E., Schreiner, P.S., and Enna, S.J., 1977, Neurotransmitter receptor alterations in Parkinson’s disease, Life Sci. 21:335–344.

    Article  PubMed  CAS  Google Scholar 

  • Riederer, P., Rausch, W.D., Birkmayer, W., Jellinger, K., and Danielczyk, W., 1978, Dopamine-sensitive adenylate cyclase in the caudate nucleus and metabolic encephalopathies, J. Neural Transm. Suppl 14:153.

    PubMed  CAS  Google Scholar 

  • Rinne, U.K., Koskinen, V., and Lönnberg, P., 1980, Neurotransmitter receptors in the parkinsonian brain, in “parkinson’s Disease: Current Progress, Problems and Management” (U.K. Rinne, M. Klinger, and G. Stamm, eds.), pp. 93–107, Elsevier, Amsterdam.

    Google Scholar 

  • Rinne, U.K., Lönnberg, P., and Koskinen, V., 1981, Dopamine receptors in the parkinsonian brain, J. Neural Transm. 51:97–106.

    Article  PubMed  CAS  Google Scholar 

  • Rinne, J.O., Rinne, J.K., Laakso, K., Lönnberg, P., and Rinne, U.K., 1985, Dopamine D-1 receptors in the parkinsonian brain, Brain Res. 359:306–310.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, T.W., and Everitt, B.J., 1982, Functional studies of central catecholamines, Int. J. Neurobiol. 23:303–365.

    Article  CAS  Google Scholar 

  • Robbins, T.W., Giardini, V., Jones, G.H., Reading, P., and Sahakian, B.J., 1990, Effects of dopamine depletion from the caudate-putamen and nucleus accumbens septi on the acquisition and performance of a conditional discrimination task, Behav. Brain Res. 38:243–261.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, T.W., and Brown, V.J., 1990, The role of the striatum in the mental chronometry of action: A theoretical review, Rev. Neurosci. 2:181–213.

    PubMed  CAS  Google Scholar 

  • Robinson, T.W., and Whishaw, I.Q., 1988, Normalization of extracellular dopamine in striatum following recovery from a partial unilateral 6-OHDA lesion of the substantia nigra: A micro-dialysis study in freely moving rat, Brain Res. 450:209–224.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, D., 1986, Bradyphrenia in parkinsonism: A historical review, Psychol. Med. 16:257–265.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J.D., Brogan, D., and Mirra, S.S., 1985, The nucleus basalis of Meynert in neurological disease: A quantitative morphological study, Ann. Neurol. 17:163–170.

    Article  PubMed  CAS  Google Scholar 

  • Rose, S., Nomoto, M., Jenner, P., and Marsden, C.D., 1989, Transient depletion of nucleus accumbens dopamine content may contribute to initial akinesia induced by MPTP in common marmosets, Biochem, Pharmacol. 38:3677–3681.

    Article  CAS  Google Scholar 

  • Roth, R.H., Walter, J.R., Murrin, L.C., and Morgenroth, V.H. III, 1975, Dopamine neurons: Role of impulse flow and presynaptic receptors in the regulation of tyrosine hydroxylase, in “Pre- and Postsynaptic Receptors” (E. Usdin and W.E. Bunney, eds.), pp. 5–46, Marcel Dekker, New York.

    Google Scholar 

  • Ruberg, M., Ploska, A., Javoy-Agid, F., and Agid, Y., 1982, Muscarinic binding and choline acetyltranferase activity in parkinsonian subjects with reference to dementia, Brain Res. 232:129–139.

    Article  PubMed  CAS  Google Scholar 

  • Sabol, K.E., Neill, D.B., Wages, S.A., Church, W.H., and Justice, J.B., 1985, Dopamine depletion in a striatal subregion disrupts performance of a skilled motor task in the rat, Brain Res. 335:33–43.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, C.H., and Jonsson, G., 1975, Mechanisms of action of 6-hydroxydopamine, Biochem. Pharmacol. 24:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Scatton, B., Javoy-Agid, F., Rouquier, L., Dubois, B., and Agid, Y., 1983, Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson’s disease, Brain Res. 275:321–328.

    Article  PubMed  CAS  Google Scholar 

  • Scatton, B., Monfort, J.C., Javoy-Agid, F., and Agid, Y., 1984, Neurochemistry of monoaminergic neurones in Parkinson’s disease, in “Catecholamines Part C: Neuropharmacology and Central Nervous System—Therapeutic Aspects,” (E. Usdin, A. Carlsson, A. Dahlström, and J. Engel, eds.), pp. 43–52, Alan R. Liss, New York.

    Google Scholar 

  • Scatton, B., Dennis, T., Lheureux, R., Monfort, J.C., Duyckaerts, C., and Javoy-Agid, F., 1986, Degeneration of noradrenergic and serotoninergic but not dopaminergic neurons in the lumbar spinal cord of parkinsonian patients, Brain Res. 380:181–185.

    Article  PubMed  CAS  Google Scholar 

  • Schallert, T., Whishaw, I.Q., DeRyck, M., and Teitelbaum, P., 1978, The postures of catecholamine-depletion catalepsy: Their possible adaptive value in thermoregulation, Physiol. Behav. 21:817–820.

    Article  PubMed  CAS  Google Scholar 

  • Schoenfield, R.I., and Uretsky, N.J., 1973, Enhancement by 6-hydroxydopamine of the effects of dopa upon motor activity of rats, J. Pharmacol. Exp. Ther. 186:616–624.

    Google Scholar 

  • Schwab, R.S., 1972, Akinesia paradoxica, Electroencephalogr. Clin. Neurophysiol. 31:87–92.

    Google Scholar 

  • Schwab, R.S., and Zieper, I., 1965, Effect of mood, motivation, stress, and alertness on performance in Parkinson’s disease, Psychiatry Neurol. 150:345–357.

    Article  CAS  Google Scholar 

  • Schwarting, R.K.W., Bonatz, A.E., Carey, R.J., and Huston, J.P., 1991, Relationships between indices of behavioral asymmetries and neurochemical changes following mesencephalic 6-hydroxydopamine injections, Brain Res. 554:46–55.

    Article  PubMed  CAS  Google Scholar 

  • Selby, G., 1990, Clinical features, in “Parkinson’s Disease” (G. Stern, ed.) Chapman and Hall, London.

    Google Scholar 

  • Shibuya, M., 1979, Dopamine sensitive adenylate cyclase activity in the striatum of Parkinson’s disease, J. Neural Transm. 44:287.

    Article  PubMed  CAS  Google Scholar 

  • Siegfried, B., and Bures, J., 1980, Handedness in rats: Blockade of reaching behavior by unilateral 6-OHDA injections into substantia nigra and caudate nucleus, Physiol. Psychol. 8:360–368.

    CAS  Google Scholar 

  • Snyder, A.M., Stricker, E.M., and Zigmond, M.J., 1985, Stress-induced neurological impairments in an animal model of parkinsonism, Ann Neurol. 18:544–551.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, A.M., Zigmond, M.J., and Lund, R.D., 1986, Sprouting of serotinergic afferents into striatum after dopamine-depleting lesions in infant rats—a retrograde transport and immunocytochemical study, J. Comp. Neurol. 245:274–281.

    Article  PubMed  CAS  Google Scholar 

  • Stachowiak, M.K., Keller, R.J., Stricker, E.M., and Zigmond, M.J., 1987, Increased dopamine efflux from striatal slices during development and after nigrostriatal bundle damage, J. Neurosci. 7:1648–1654.

    PubMed  CAS  Google Scholar 

  • Stern, G., 1966, The effects of lesions in the substantia nigra, Brain 89:449–478.

    Article  PubMed  CAS  Google Scholar 

  • Strieker, E.M., and Zigmond, M.J., 1976, Recovery of function after damage to central catecholamine-containing neurons: A neurochemical model for the lateral hypothalamic syndrome, in “Progress in Physiological Psychology and Psychobiology” (J.M. Sprague and A.E. Epstein, eds.), pp. 121–189, Academic Press, New York.

    Google Scholar 

  • Tassin, J.P., Hervé, D., Vezina, P., Trovero, F., Blanc, G., and Glowinski, J., 1991, Relationships between mesocortical and mesolimbic dopamine neurons: Functional correlates of D1 receptor heteroregulation, in “The Mesolimbic Dopamine System: From Motivation to Action (P. Willner and J. Scheel-Kruger, eds.), pp. 175–196, Wiley, Chichester.

    Google Scholar 

  • Thornburg, J.E., and Moore, K. E., 1975, Supersensitivity to dopamine agonists following uni- lateral, 6-hydroxydopamine-induced striatal lesions in mice, J. Pharmacol. Exp. Ther. 192:42–49.

    PubMed  CAS  Google Scholar 

  • Tranzer, J.P., and Thoenen, H., 1968, An electron microscopic study of selective, acute degeneration of sympathetic nerve terminals after the administration of 6-hydroxydopamine, Experientia 24:155–156.

    Article  PubMed  CAS  Google Scholar 

  • Trendelenberg, U., 1966, Mechanisms of supersensitivity and subsensitivity to sympathomimetic amines. Pharmacol. Rev. 18:629.

    Google Scholar 

  • Tretiakoff, C., 1919, Contribution a 1’etude de l’anatomie pathologique du locus niger de Soemmering avec quelques deductions relatives a la pathogenie des troubles du tonus musculaire et de la maladie de Parkinson, These de Paris.

    Google Scholar 

  • Triarhou, L.C., Low, W.C., and Ghetti, B., 1986, Transplantation of ventral mesencephalic anlagen to hosts with genetic nigrostriatal dopamine deficiency, Proc. Natl. Acad. Sci. USA 83:8789–8793.

    Article  PubMed  CAS  Google Scholar 

  • Turner, B.H., 1973, Sensorimotor syndrome produced by lesions of the amygdala and lateral hypothalamus, J. Comp. Physiol. Psychol. 82:37–47.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt, U., 1968, 6-Hydroxydopamine induced degeneration of central monoamine neurons, Eur. J. Pharmacol. 5:107–110.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt, U., 1971a, Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour, Acta Physiol Scand. Suppl. 367:49–68.

    PubMed  CAS  Google Scholar 

  • Ungerstedt, U., 1971b, Postsynaptic supersensitivity after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand. Suppl. 367:69–93.

    PubMed  CAS  Google Scholar 

  • Ungerstedt, U., 1971c, Adipsia and aphagia after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine system, Acta Physio. Scand. Suppl. 367:96–122.

    Google Scholar 

  • Ungerstedt, U., and Arbuthnott, G.W., 1970, Quantitative recording of rotational behaviour in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system, Brain Res. 24:485–493.

    Article  PubMed  CAS  Google Scholar 

  • Uretsky, N.J., and Iversen, L.L., 1969, Effects of 6-hydroxydopamine on catecholamine containing neurones in the brain, Nature 221:557.

    Article  PubMed  CAS  Google Scholar 

  • Uretsky, N.J., and Iversen, L.L., 1970, Effects of 6-hydroxydopamine on catecholamine containing neurones in the rat brain, J. Neurochem. 17:269–278.

    Article  PubMed  CAS  Google Scholar 

  • Valenstein, E., and Heilman, K.M., 1981, Unilateral hypokinesia and motor extinction. Neurology 31:445–448.

    PubMed  CAS  Google Scholar 

  • Van Praag, 1982, Depression, Lancet ii:1259–1264.

    Google Scholar 

  • Villardita, C., Smirni, P., and Zappala, G., 1983, Visual neglect in Parkinson’s disease, Arch. Neurol. 40:737–739.

    Article  PubMed  CAS  Google Scholar 

  • Waddington, J.L., Cross, A.J., Longden, A., Owen, F., and Poulter, M., 1979, Functional distinction between DA-stimulated adenylate cyclase and 3H-spiperone binding sites in rat striatum, Eur. J. Pharmacol. 58:341–342.

    Article  PubMed  CAS  Google Scholar 

  • Walters, J.R., Roth, R.H., and Aghajanian, G.K., 1973, Dopaminergic neurons: Similar biochemical and histochemical effects of gamma-hydroxybutyrate and acute lesions of the nigrostriatal pathway, J. Pharmacol. Exp. Ther. 186:630–639.

    PubMed  CAS  Google Scholar 

  • Westerink, B.H.C., Van der Hayden, J.A.M., and Korf, J., 1978, Enhanced dopamine metabolism after small lesions in the midbrain of the rat, Life Sci. 22:749–756.

    Article  PubMed  CAS  Google Scholar 

  • Whishaw, I.Q., and Dunnett, S.B., 1985, Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigation and locomotion dependent upon beacon or distal cues, Behav. Brain Res. 18:11–29.

    Article  PubMed  CAS  Google Scholar 

  • Whishaw, I.Q., O’Connor, W.T., and Dunnett, S.B., 1986, The contributions of motor cortex, nigrostriatal dopamine and caudate-putamen to skilled forelimb use in the rat, Brain 109:805–843.

    Article  PubMed  Google Scholar 

  • Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T., and DeLong, M.R., 1982, Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain, Science 215:1237–1239.

    Article  PubMed  CAS  Google Scholar 

  • Wiley, R.G., Oeltmann, T.N., and Lappi, D.A., 1991, Immunolesioning: Selective destruction of neurons using immunotoxin to rat NGF receptor, Brain Res. 562:149–153.

    Article  PubMed  CAS  Google Scholar 

  • Wolgin, D.L., and Teitelbaum, P., 1978, Role of activation and sensory stimuli in recovery from lateral hypothalamic damage in the cat, J. Comp. Physiol. Psychol. 92:474–500.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W.Q., Tilson, H.A., Nanry, K.P., Hudson, P.M., Hong, K.S., and Stachowiak, M.K., 1988, Increased dopamine release from striata of rats after unilateral nigrostriatal bundle damage, Brain Res. 461:335–342.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond, M. J., and Stricker, E.M., 1972, Deficits in feeding behavior after intraventricular injection of 6-hydroxydopamine in rats, Science 177:1211–1213.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond, M.J., and Strieker, E.M., 1980, Supersensitivity after intraventricular 6-hydroxydopamine: Relation to dopamine depletion, Experientia 36:436–438.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond, M.J., and Strieker, E.M., 1989, Animal models of parkinsonism using selective neurotoxins: Clinical and basic implications, Int. Rev. Neurobiol. 31:1–79.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond, M.J., Acheson, A.L., Stachiowiak, M.K., and Strieker, E.M., 1984, Neurochemical compensation after nigrostriatal bundle injury in an animal model of preclinical Pakinsonism, Arch. Neurol. 41:856–861.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reading, P.J., Dunnett, S.B. (1994). 6-Hydroxydopamine Lesions of Nigrostriatal Neurons as an Animal Model of Parkinson’s Disease. In: Woodruff, M.L., Nonneman, A.J. (eds) Toxin-Induced Models of Neurological Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1447-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1447-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1449-1

  • Online ISBN: 978-1-4899-1447-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics