Skip to main content

Effect of Grain Size on Fatigue Crack Growth in Silicon Nitride and Alumina

  • Chapter
Plastic Deformation of Ceramics

Abstract

Fatigue crack growth tests of alumina with four different grain sizes and silicon nitride with two different grain sizes were carried out at room temperature to study the effect of grain size on the fatigue properties. Also, the effect of grain size on high temperature fatigue of the silicon nitride was studied by conducting fatigue tests at 1300°C. The room temperature tests showed that the fatigue fracture was intergranular and that threshold values and crack growth resistance increased with increasing grain size for both materials. Measurements of the crack mouth opening showed that grain bridging alone could account for most of the observed difference in crack growth resistance. The high temperature tests showed that the crack growth resistance was lower than at room temperature and that the effect of grain size was much smaller. The lower crack growth resistance at high temperature was the result of weakening of the amorphous phase present at grain boundaries. Also at high temperatures bridging was an important phenomena, especially at high K-levels, but the nature of bridging was different compared to at room temperature. At room temperature the bridges consisted of one or a few grains while at high temperature they consisted of clusters of many grains and therefore the influence of grain size was less significant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S. Suresh. “Fatigue of Materials,” Cambridge University Press, Cambridge (1992).

    Google Scholar 

  2. G. Grathwohl, Ermüdung von Keramik unter Schwingbeanspruchung, Mat.-wiss. u. Werkstofftech. 19:113 (1988).

    Article  Google Scholar 

  3. G. Grathwohl, Crack resistance and fatigue limits of structural ceramics, Powder Metallurgy International. 24[2]:98 (1992).

    Google Scholar 

  4. R. H. Dauskardt, D. B. Marshall and R. O. Ritchie, Cyclic fatigue-crack propagation in magnesia-partially-stabilized zirconia ceramics, J. Am. Ceram. Soc. 73[4]:893 (1990).

    Article  Google Scholar 

  5. L. A. Sylva and S. Suresh, Crack growth in transforming ceramics under cyclic tensile loads, J. Mater. Sci. 24[5]:1729 (1989).

    Article  ADS  Google Scholar 

  6. T. Fett, G. Martin, D. Munz and G. Thun, Determination of da/dN-ΔK1 curves for small cracks in alumina in alternating bending tests, J. Mater. Sci. 26[12]:3320 (1991).

    Article  ADS  Google Scholar 

  7. T. Kawakubo and K. Komeya, Static and cyclic fatigue behavior of a sintered silicon nitride at room temperature, J. Am. Ceram. Soc. 70[6]:400 (1987).

    Article  Google Scholar 

  8. Y. Mutoh, M. Takahashi and M. Takeuchi, Fatigue crack growth in several ceramic materials, Fatigue Fract. Engng. Mater. Struct, 16[8]:875 (1993).

    Article  Google Scholar 

  9. G. Choi, S. Horibe and Y. Kawabe, Cyclic fatigue in silicon nitride ceramics, Acta. Metall. Mater. 42[4]:1407 (1994).

    Article  Google Scholar 

  10. H. Kishimoto, A. Ueno and S. Okawara, Crack propagation behavior of polycrystalline alumina under static and cyclic loads, J. Am. Ceram. Soc. 77[5]:1324 (1994).

    Article  Google Scholar 

  11. D. S. Jacobs and I.-W. Chen, Mechanical and environmental factors in the cyclic and static fatigue of silicon nitride, J. Am. Ceram. Soc. 77[5]:1153 (1994).

    Article  Google Scholar 

  12. R. Kossowsky, Cyclic fatigue of hot-pressed Si3N4, J. Am. Ceram. Soc. 56[10]:531 (1973).

    Article  Google Scholar 

  13. A. G. Evans and E. R. Fuller, Crack propagation in ceramic materials under cyclic loading conditions, Metall. Trans. 5:27 (1974).

    Google Scholar 

  14. A. G. Evans, L. R. Rüssel and D. W. Richerson, Slow crack growth in ceramic materialsat elevated temperatures, Metall. Trans. 6A[4]:707 (1975).

    Google Scholar 

  15. W. Blumenthal and A. G. Evans, High temperature failure of polycrystalline alumina: II, creep crack growth and blunting, J. Am. Ceram. Soc. 67[11]:751 (1984).

    Article  Google Scholar 

  16. T. Fett, G. Himsholt and D. Munz, Adv. Ceram. Mater, 1[2]:179 (1986).

    Google Scholar 

  17. M. Masuda, T. Soma, M, Matsui and I. Oda, Fatigue of ceramics (part 3)-cyclic fatigue behavior of sintered Si3N4 at high temperature, J. Ceram. Soc. Jpn. Inter. Ed. 97:601 (1989).

    Google Scholar 

  18. T. Ohij, Y. Yamauchi, W. Kanematsu and S. Ito, Dynamic and static fatigue strength and crack propagation of engineering ceramics, J. Ceram. Soc. Jpn. Inter. Ed. 98[6]:521 (1990).

    Article  Google Scholar 

  19. L. X. Han and S. Suresh, High-temperature failure of an alumina-silicon carbide composite under cyclic loads: mechanisms of fatigue crack tip damage, J. Am. Ceram. Soc. 72[7]:1233 (1989).

    Article  Google Scholar 

  20. L. Ewart and S. Suresh, Elevated-temperature crack growth in polycrystalline alumina under static and cyclic loads, J. Mater. Sci. 27:5181 (1992).

    Article  ADS  Google Scholar 

  21. C.-K. J. Lin, D. F. Socie, Y. Xu, and A. Zangvil, Static and cyclic fatigue at high temperatures: II, failure analysis, J. Am. Ceram. Soc. 75[3]:637 (1992).

    Article  Google Scholar 

  22. M. G. Jenkins, M. K. Ferber and C.-K. J. Lin, Apparent enhanced resistance under cyclic tensile loading for a HIPed silicon nitride, J. Am. Ceram. Soc. 76[3]:788 (1993).

    Article  Google Scholar 

  23. M. G. Jenkins, M. K. Ferber and C.-K. J. Lin, Beneficial effects of cyclic tensile loading on the fatigue resistance of an Si3N4, J. Mater. Sci. Lett. 12:1940 (1993).

    Article  Google Scholar 

  24. S.-Y. Liu, I.-W. Chen and T.-Y. Tien, Fatigue crack growth of silicon nitride at 1400°C: A novel fatigue-induced crack tip bridging phenomenon, J. Am. Ceram. Soc. 77[1]:137 (1994).

    Article  Google Scholar 

  25. U. Ramamurty, T. Hansson and S. Suresh, High-temperature crack growth in monolithic and SiCw-reinforced silicon nitride under static and cyclic loads, Accepted for publication in J. Am. Ceram. Soc. (1994).

    Google Scholar 

  26. T. Hansson, U. Ramamurty, C. Bull, S. Suresh and R. Warren, Elevated temperature fracture behavior of monolithic and SiCw-reinforced silicon nitride under quasi-static loads, Manuscript in preparation. (1994).

    Google Scholar 

  27. T. Sadahiro and S. Takatsu, A new precracking method for fracture toughness testing of cemented carbides, in: “Modern Developments in Powder Metallurgy, vol. 14,” H. H. Hausner, H. W. Antes and G. D. Smith, ed., Plenum, New York (1981).

    Google Scholar 

  28. R. Warren and B. Johannesson, Creation of stable cracks in hard metalsusing “bridge” indentation, Powder Metall. 27[1]:25 (1984).

    Google Scholar 

  29. Y. Mutoh and M. Takahashi, Mechanisms of fatigue crack growth in silicon nitride, in: “Theoretical Concepts and Numerical Analysis of Fatigue,” A. F. Blom and C. J. Beevers, ed., EMAS, Warley (1992).

    Google Scholar 

  30. J. D. Landes and J. A. Begley, A fracture mechanics approach to creep crack growth, in: “ASTM STP 590”, American Society for Testing and Materials, (1976).

    Google Scholar 

  31. J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, Trans. ASME-J. Appl. Mech. 35:379 (1968).

    Article  ADS  Google Scholar 

  32. C. F. Shih and A. Needleman, Fully plastic crack problems, part 1: Solutions by a penalty method, Trans. ASME-J. Appl. Mech. 51:48 (1984).

    Article  ADS  MATH  Google Scholar 

  33. H. Riedel and J. R. Rice, Tensile cracks in creeping solids, in: “Fracture Mechanics: Twelfth Conference, ASTM STP 700”, American Society for Testing and Materials, (1980).

    Google Scholar 

  34. H. Riedel, Crack-tip stress fields and crack growth under creep fatigue conditions, in: “Elastic-Plastic Fracture: Second Symposium, Volume I-Inelastic crack analysis, ASTM STP 803,” C. F. Shih and J. P. Gudas, ed., American Society for Testing and Materials, (1983).

    Google Scholar 

  35. T. Ohij and Y. Yamauchi, Tensile creep and creep rupture behavior of monolithic and SiC-whisker reinforced silicon nitride ceramics, J. Am. Ceram. Soc. 76[12]:3105 (1993).

    Article  Google Scholar 

  36. K. Sato, K. Tanaka, Y. Nakano and T. Mori, Temperature dependence of anelastic deformation in polycrystalline silicon nitride, J. Am. Ceram. Soc. 76[8]:2042 (1993).

    Article  Google Scholar 

  37. M. V. Swain, R-curve behavior in a polycrystalline alumina material, J. Mater.Sci. Lett. 5:1313 (1986).

    Article  Google Scholar 

  38. R. W. Steinbrech, A. Reichl and W. Schaarwächter, R-curve behavior of long cracks in alumina, J. Am. Ceram. Soc. 73:2009 (1990).

    Article  Google Scholar 

  39. R. W. Steinbrech, Toughening mechanisms for ceramic materials, J. Euro. Ceram. Soc. 10:131 (1992).

    Article  Google Scholar 

  40. M. Takahashi, “Basic Study on Fatigue Crack Growth Behavior in Ceramic Materials”, Doctoral Thesis, Nagaoka University of Technology (1993).

    Google Scholar 

  41. D. S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. 8:100 (1960).

    Article  ADS  Google Scholar 

  42. H. Tada, P. C. Paris and G. R. Irwin, “The Stress Analysis of Cracks Handbook,” Del Research Corporation, Hellertown (1973).

    Google Scholar 

  43. S. Suresh, Fatigue crack deflection and fracture surface contact: micromechanical models, Metall. Trans. 16A:249 (1985).

    Google Scholar 

  44. J. Helm, “Langzeitige Zugkriechuntersuchungen und Lebensdauer-abschätzung von keramischen Konstruktionswerkstoffen am Beispiel von Siliciumnitrid,” Staatliche Materialprüfungsanstalt (MPA) Universität Stuttgart, Stuttgart (1994).

    Google Scholar 

  45. S. M. Wiederhorn, B. J. Hockey, D. C. Cranmer and R. Yeckley, Transient creep behaviour of hot isostatically pressed silicon nitride, J. Mater. Sci. 28:445 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mutoh, Y., Miyashita, Y., Hansson, T., Takahashi, M. (1995). Effect of Grain Size on Fatigue Crack Growth in Silicon Nitride and Alumina. In: Bradt, R.C., Brookes, C.A., Routbort, J.L. (eds) Plastic Deformation of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1441-5_57

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1441-5_57

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1443-9

  • Online ISBN: 978-1-4899-1441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics