Skip to main content

Evaluation of Elevated-Temperature Crack Growth in Ceramics under Static and Cyclic Loads

  • Chapter
Plastic Deformation of Ceramics

Abstract

Since advanced ceramics such as alumina and silicon nitride are considered for use in a variety of structural applications at elevated-temperature, it is very important to evaluate the strength and fracture resistance at elevated-temperature. The results reported so far revealed that the viscous glass phase which exists at the grain boundaries significantly influences the creation of intergranular cavities and the subcriticai crack growth (SCG) above a specific temperature depending on materials1~9. Above that temperature, it has been observed that the fracture toughness and R-curve depended on loading rate7, and that the fracture toughness increased abruptly with increasing temperature8. The fatigue strength under cyclic loading above the temperature depended on loading frequency, and was higher than that under static loading9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A.G. Evans and W. Blumenthal, High temperature failure in ceramics, in: “Fracture Mechanics of Ceramics Vol. 6,” R.C. Bradt et al., ed., Plenum Press, New York 423 (1981).

    Google Scholar 

  2. D.C. Larsen, J.W. Adams, S.A. Bortz and R. Ruh, Evidence of strength degradation by subcriticai crack growth in Si3N4 and SiC, in: “Fracture Mechanics of Ceramics Vol. 6,” R.C. Bradt et al., ed., Plenum Press, New York 571 (1981).

    Google Scholar 

  3. R.K. Govila, Uniaxial tensile and flexural stress rupture strength of hot-pressed Si3N4, J. Am. Ceram. Soc. 65:15 (1982).

    Article  Google Scholar 

  4. S.H. Knickerbocker, A. Zangvil and S.D. Brown, High-temperature mechanical properties and microstructure for hot-pressed silicon nitrides with amorphous and crystalline inter granular phases, J. Am. Ceram. Soc., 68:C99 (1985).

    Article  Google Scholar 

  5. G.D. Quinn and J.B. Quinn, Slow crack growth in hot-pressed silicon nitride, in: “Fracture Mechanics of Ceramics Vol. 6,” R.C. Bradt et al., ed., Plenum Press, New York 603 (1981).

    Google Scholar 

  6. A. Ueno, H. Kishimoto, H. Kawamoto and S. Ura, High temperature tensile tests of sintered silicon nitride, J. Soc Mater. Sci., Japan 39:716 (1990) in Japanese.

    Article  Google Scholar 

  7. N. Kohler, Y. Ikuhara, H. Awaji and K. Funatani, High temperature fracture mechanism of gaspressure sintered silicon nitride, in: “Fracture Mechanics of Ceramics Vol. 10,” R.C. Bradt et al., ed., Plenum Press, New York 367 (1992).

    Chapter  Google Scholar 

  8. Y. Mutoh, K. Yamaishi, N. Miyahara and T. Oikawa, Brittle-to-ductile transition in silicon nitride, in: “Fracture Mechanics of Ceramics Vol. 10,” R.C. Bradt et al., ed., Plenum Press, New York 427 (1992).

    Chapter  Google Scholar 

  9. H. Hojo, A. Yamada and K. Saruki, Properties of fatigue strength in silicon nitride at high temperatures, Proc. 21th Fatigue Sympo. 223 (1992) in Japanese.

    Google Scholar 

  10. T. Ogawa, T. Ochi and K. Tokaji, On the relationship between fatigue crack growth and fatigue resistance curve in ceramics, Proc. ICCM/9, A. Miravete ed., Univ. Zaragoza Woodhead Publ. Ltd, 2:129 (1993).

    Google Scholar 

  11. T. Ogawa, Tensile fatigue crack growth of polycrystalline magnesia, in: “Fracture Mechanics of Ceramics Vol. 9,” R.C. Bradt et al., ed., Plenum Press, New York 455 (1992).

    Chapter  Google Scholar 

  12. T. Ogawa and S. Suresh, Surface film technique for crack length measurement in nonconductive brittle materials: Calibration and evaluation, Eng. Fract. Mech., 39:629 (1991).

    Article  ADS  Google Scholar 

  13. A. Saxena and S.J. Hudak Jr., Review and extension of compliance information for common crack growth specimens, Int. J. Fract., 14:453 (1978).

    Article  Google Scholar 

  14. R.J. Fields, E.R. Fuller Jr., T.J. Chuang, L. Chuck and K. Kobayashi, Crack growth in sialon, in: “Fracture Mechanics of Ceramics Vol. 6,” R.C. Bradt et al., ed., Plenum Press, New York 463 (1981).

    Google Scholar 

  15. L. Ewart and S. Suresh, Elevated-temperature crack growth in polycrystalline alumina under static and cyclic loads, J. Mater. Sci., 27:5181 (1992).

    Article  ADS  Google Scholar 

  16. L.X. Han and S. Suresh, High-temperature failure of an alumina-silicon carbide composite under cyclic loads: mechanism of fatigue crack tip damage, J. Am. Ceram. Soc., 72:1233 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ogawa, T., Hirose, M., Tokaji, K. (1995). Evaluation of Elevated-Temperature Crack Growth in Ceramics under Static and Cyclic Loads. In: Bradt, R.C., Brookes, C.A., Routbort, J.L. (eds) Plastic Deformation of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1441-5_56

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1441-5_56

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1443-9

  • Online ISBN: 978-1-4899-1441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics