Skip to main content

Crack-Wake Plasticity and Time-Dependent Bridging During Subcritical Crack Growth in CVI-SiC Reinforced with Nicalon Fibers

  • Chapter
Plastic Deformation of Ceramics

Abstract

Time-dependent crack growth, referred to as subcriticai crack growth or slow crack growth (SCG), likely controls the long-term life of continuous-fiber-reinforced ceramic matrix composite (CFC) structural materials at elevated temperatures. The use of CFCs in systems where long-term stability is required demands resistance to time-dependent crack growth, as well as high-temperature corrosion. Subcriticai crack growth, or static fatigue, in glass1, 2, glass-ceramic3, and monolithic ceramics, such as alumina and silicon carbide4–11, have been extensively studied. Data for crack propagation shown on a log-log plot with crack velocity V as a function of applied stress intensity K typically show three distinct regions, referred to as regions I, II, and III. Region I exhibits a strong dependence of crack velocity on K such that the relationship V = AK n is obeyed once a threshold value of K, denoted as K th , is exceeded. Values of n can range from 4 to 30 or higher and n is a function of temperature, microstructure, and chemical environment.7–11 Higher values of n are associated with increased resistance to crack growth and n decreases with increasing temperature, decreasing grain size, and increasing corrosion rates. Region I behavior can be modeled by reaction rate theory and appears to be reaction rate limited. Region II, in contrast, exhibits a weak dependence on K and is observed in systems where diffusion of a critical chemical species to the crack-tip is rate controlling. Region II is not always observed in ceramics, especially at elevated temperatures.5–10 In region III the crack velocity again depends strongly on K and is, typically, independent of environment as K approaches K C and rapid crack growth ensues. For the majority of ceramics at elevated temperature the entire range of crack propagation can be represented by a single curve obeying V = AK n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. M. Wiederhorn and L. H. Bolz, Stress Corrosion and Static Fatigue of Glass, J. Am. Ceram. Soc. 53:543–548 (1970).

    Article  Google Scholar 

  2. S. M. Weiderhom, S. W. Freiman, E. R. Fuller, and C. J. Simmons, Effects of Water and Other Dielectrics on Crack Growth, J. Mater. Sci. 17:3460–3478 (1982).

    Article  ADS  Google Scholar 

  3. B.J. Pletka and S. M. Wiederhorn, Subcriticai Crack Growth in Glass-Ceramics, in “Fracture Mechanics of Ceramics,” Vol. 4, R. C. Bradt et al., (eds.), Plenum Press, NY, 1978, pp. 745–759.

    Google Scholar 

  4. A. G. Evans, A Method for Evaluating the Time-Dependent Failure Characteristics of Brittle Materials-and its Application to Polycrystalline Alumina, J. Mater. Sci. 7:1137–1146 (1972).

    Article  ADS  Google Scholar 

  5. A. G. Evans, L. R. Russell, and D. W. Richerson, Slow Crack Growth in Ceramic Materials at Elevated Temperatures, Metall. Trans. A 6A:707–716 (1975).

    ADS  Google Scholar 

  6. A. G. Evans and F. F. Lange, Crack Propagation and Fracture in Silicon Carbide, J. Mater. Sci. 10:1659–1664 (1975).

    Article  ADS  Google Scholar 

  7. K. D. McHenry and R. E. Tressler, Subcriticai Crack Growth in Silicon Carbide, J. Mater. Sci. 12:1272–1278 (1977).

    Article  ADS  Google Scholar 

  8. J. L. Henshall, D. J. Rowcliffe, and J. W. Edington, K IC and Delayed Fracture Measurements on Hot-Pressed SiC, J. Am. Ceram. Soc. 62:36–41 (1979).

    Article  Google Scholar 

  9. J. L. Henshall, High Temperature Slow Crack Growth in Hot Pressed Silicon Carbide, Res Mech. 1:229–248 (1980).

    Google Scholar 

  10. J. L. Henshall, The Mechanism and Mechanics of Subcriticai Crack Propagation in Hot-Pressed SiC Above 1000C, in “Advances in Fracture Research (Fracture 81),” D. Francois, ed., Pergamon Press, NY, 1981, pp. 1541–1549.

    Google Scholar 

  11. P. F. Becher and M. K. Ferber, Grain-Size Dependence of the Slow-Crack Growth Behavior in Noncubic Ceramics, Acta Metall. 33:1217–1221 (1985).

    Article  Google Scholar 

  12. H. Hübner and W. Jillek, Subcritical Crack Extension and Crack Resistance in Polycrystalline Alumina, J. Mater. Sci. 12:117–125 (1977).

    Article  ADS  Google Scholar 

  13. R. F. Cook, B. R. Lawn, and C. J. Fairbanks, Microstructure-Strength Properties in Ceramics: I, Effect of Crack Size on Toughness, J. Am. Ceram. Soc. 68:604–615 (1985).

    Article  Google Scholar 

  14. P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y.-W. Mai, and B. J. Hockey, Crack-Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: I, Experimental Study on Alumina, J. Am. Ceram. Soc. 70:279–289 (1987).

    Article  Google Scholar 

  15. Y.-W. Mai and B. R. Lawn, Crack-Interface Grain Bridging as a Fracture Resistance Mechanism in Ceramics: II, Theoretical Fracture Mechanics Model, J. Am. Ceram. Soc. 70:289–294 (1987).

    Article  Google Scholar 

  16. R. Knehans and R. Steinbrech, Memory Effect of Crack Resistance During Slow Crack Growth in Notched A12O3 Bend Specimens, J. Mater. Sci. Lett, 1:327–329 (1982).

    Article  Google Scholar 

  17. R. Steinbrech, R. Knehans, and W. Schaarwächter, Increase of Crack Resistance During Slow Crack Growth in A12O3 Bend Specimens, J. Mater. Sci. 18:265–270 (1983).

    Article  ADS  Google Scholar 

  18. T. Fett and D. Münz, Determination of Fracture Toughness at High Temperatures after Subcritical Crack Extension, J. Am. Ceram. Soc. 75:3133–3136 (1992).

    Article  Google Scholar 

  19. R. E. Grimes, G. P. Kelkar, L. Guazzone, and K. W. White, Elevated-Temperature R-curve Behavior of a Polycrystalline Alumina, J. Am. Ceram. Soc. 73:1399–1404 (1990).

    Article  Google Scholar 

  20. K. Jakus, S. M. Weiderhorn, and B. J. Hockey, Nucleation and Growth of Cracks in Vitreous-Bonded Aluminum Oxide at Elevated Temperatures, J. Am. Ceram. Soc. 69:725–731 (1986).

    Article  Google Scholar 

  21. K. Jakus, J. E. Ritter, and R. H. Schwillinski, Viscous Glass Crack Bridging Forces in a Sintered Glassy Alumina at Elevated Temperatures, J. Am. Ceram. Soc. 76:33–38 (1993).

    Article  Google Scholar 

  22. P. F. Becher, T. N. Tiegs, J. C. Ogle, and W. H. Warwick, Toughening of Ceramics by Whisker Reinforcement, in “Fracture Mechanics of Ceramics,” Vol. 7, R. C. Bradt et al., (eds.), Plenum Press, NY, 1986, pp. 61–73.

    Chapter  Google Scholar 

  23. M. G. Jenkins, A. S. Kobayashi, K. W. White, and R. C. Bradt, Crack Initiation and Arrest in a SiC Whisker/Al2O3 Matrix Composite, J. Am. Ceram. Soc. 70:393–395 (1987).

    Article  Google Scholar 

  24. K. Zeng, K. Breder, and D. Rowcliffe, Comparison of Slow Crack Growth Behavior in Alumina and SiC-Whisker-Reinforced Alumina, J. Am. Ceram. Soc. 76:1673–1680 (1993).

    Article  Google Scholar 

  25. K. W. White and L. Guazzone, Elevated-Temperature Toughening Mechanisms in a SiCW/A12O3 Composite, J. Am. Ceram. Soc. 74:2280–2285 (1991).

    Article  Google Scholar 

  26. K. Jakus, and S. V. Nair, Nucleation and Growth of Cracks in SiCw/Al2O3 Composites, Compos. Sci. Technol. 37:279–297 (1990).

    Article  Google Scholar 

  27. A. G. Evans, Perspective on the Development of High-Toughness Ceramics, J. Am. Ceram. Soc. 73:187–206(1990).

    Article  Google Scholar 

  28. S. V. Nair, K. Jakus, and C. Ostertag, Role of Glassy Interfaces in High Temperature Crack Growth in SiC Fiber Reinforced Alumina, Ceram. Engr. Sci. Proc. 9:681–686 (1988).

    Article  Google Scholar 

  29. S. V. Nair, K. Jakus, and T. J. Lardner, The Mechanics of Matrix Cracking in Fiber Reinforced Ceramic Composites Containing a Viscous Interface, Mech. Mater. 12:229–244 (1991).

    Article  Google Scholar 

  30. C. H. Henager, Jr. and R. H. Jones, Subcritical Crack Growth in CVI-SiC Reinforced with Nicalon Fibers: Experiment and Model, J. Am. Ceram. Soc. 77:2381–2394 (1994).

    Article  Google Scholar 

  31. M. D. Thouless, Bridging and Damage Zones in Crack Growth, J. Am. Ceram. Soc. 71:408–413 (1988).

    Article  Google Scholar 

  32. S. V. Nair and T.-J. Gwo, Role of Crack Wake Toughening on Elevated Temperature Crack Growth in a Fiber Reinforced Ceramic Composite, J. Engr. Mater. Technol. 115:273–280 (1993).

    Article  Google Scholar 

  33. C. H. Henager, Jr. and R. H. Jones, The Effects of an Aggressive Environment on the Subcritical Crack Growth of a Continuous-fiber Ceramic Composite, Ceramic Eng. Sci. Proc. 13:411–419 (1992).

    Google Scholar 

  34. C. H. Henager, Jr. and R. H. Jones, Effects of Varying PO2 on Subcritical Crack Growth in Continuous-Fiber Reinforced Ceramic Composites, Ceramic Engr. Sci. Proc. 14:408–415 (1993).

    Article  Google Scholar 

  35. C. H. Henager, Jr. and R. H. Jones, Effects of Oxygen on the Subcritical Crack Growth of SiC/SiC Composites, in “High Temperature Ceramic Matrix Composites: HT-CMCl,” R. Naslain, J. Lamon, D. Doumeingts, (eds.), Proceedings of the Sixth European Conf. on Composite Mater., ECCM-6, Bordeaux, France, Woodhead Publishing Limited, Cambridge, UK, 1993, pp. 667-673.

    Google Scholar 

  36. C. H. Henager, Jr. and R. H. Jones, Environmental Effects on Elevated Temperature Subcritical Crack Growth of SiC/SiC Composites, in “Proceedings of the Engineering Foundation Conf. on Critical Issues in the Development of High-Temperature Structural Materials,” N. S. Stoloff, D. J. Duquette, and A. F. Giamei, (eds.), TMS, Warrendale, PA, 1993, pp. 445-453.

    Google Scholar 

  37. C. H. Henager, Jr. and R. H. Jones, Subcritical Crack Growth in Continuous-Fiber Reinforced Ceramic Composites, in “Ceramics Transactions, Vol. 38: Advances in Ceramic-Matrix Composites,” N. P. Bansal, et al., (eds.), The American Ceramics Society, Westerville, OH, 1993, pp. 317-328.

    Google Scholar 

  38. A. Bornhauser, K. Kromp, and R. F. Pabst, R-Curve Evaluation with Ceramic Materials at Elevated Temperatures by an Energy Approach Using Direct Observation and Compliance Calculation of the Crack Length, J. Mater. Sci. 20:2586–2596 (1985).

    Article  ADS  Google Scholar 

  39. A. G. Evans and R. M. McMeeking, On the Toughening of Ceramics by Strong Reinforcements, Acta Metall. 34:2435–2441 (1986).

    Article  Google Scholar 

  40. D. L. Davidson, The Micromechanics of Fatigue Crack Growth at 25°C in Ti-6Al-4V Reinforced with SCS-6 Fibers, Met. Trans. A 23:865–879 (1992).

    Article  Google Scholar 

  41. G. Simon and A. R. Bunsell, Creep Behavior and Structural Characterization at High Temperatures of Nicalon SiC Fibres, J. Mater. Sci. 19:3658–3670 (1984).

    Article  ADS  Google Scholar 

  42. J. A. DiCarlo, Creep Limitations of Current Polycrystalline Ceramic Fibers, Compos. Sci. and Technol. 51:213–222 (1994).

    Article  Google Scholar 

  43. C. F. Windisch, C. H. Henager, Jr., and R. J. Jones, TGA Study of the Oxidation of the C-interface in Nicalon-Fiber-Reinforced SiC-Matrix CMC Material, in preparation for J. Am. Ceram. Soc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Henager, C.H., Jones, R.H., Windisch, C.F. (1995). Crack-Wake Plasticity and Time-Dependent Bridging During Subcritical Crack Growth in CVI-SiC Reinforced with Nicalon Fibers. In: Bradt, R.C., Brookes, C.A., Routbort, J.L. (eds) Plastic Deformation of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1441-5_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1441-5_55

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1443-9

  • Online ISBN: 978-1-4899-1441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics