Skip to main content

Mechanical Response of Ceramic Composites at Elevated Temperatures

  • Chapter
Plastic Deformation of Ceramics
  • 526 Accesses

Abstract

Ceramic matrix composites (CMCs) are attractive for applications at elevated temperatures because of their low density, high strength, refractoriness, and toughness. Mechanical properties pf these fiber-reinforced CMCs are dependent on properties of the reinforcing fibers, matrix, and fiber-matrix interface. In addition, issues related to thermomechanical and thermochemical compatibility are important contributors to the overall mechanical response of CMCs. Furthermore, processing conditions can have a significant influence on the mechanical behavior of composites because most CMCs are processed at relatively high temperatures where fiber properties may degrade because of the thermal or thermochemical effects. Therefore, a CMC useful in high-temperature structures requires selection of candidate reinforcing fibers, matrix materials, and reinforcement coatings with thermomechanical and thermochemical stability at application temperatures for extended time periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aveston, G. A. Cooper, and A. Kelly, “Single and Multiple Fracture,” The Properties of Fiber Composites, Conference Proceedings, National Physical Laboratory, IPC Science and Technology Press, pp. 15-26 (1971).

    Google Scholar 

  2. B. Budianski, J. W. Hutchinson, and A. G. Evans, “Matrix Fracture in Fiber-Reinforced Ceramics,” J. Mech. Phys. Solids. 34(2): 167–189 (1986).

    Article  ADS  Google Scholar 

  3. M. Sutcu and W. B. Hillig, “The Effect of Fiber-Matrix Debond Energy on the Matrix Cracking Strength and Debond Shear Strength,” Acta Metall. 38: 2653 (1990).

    Article  Google Scholar 

  4. R. N. Singh, “Influence of Interfacial Shear Stress on First Matrix Cracking Stress in Ceramic Matrix Composites,” J. Amer. Ceram. Soc. 73[10]: 2930–37 (1990).

    Article  Google Scholar 

  5. D. B. Marshall, B. N. Cox, and A. G. Evans, “The Mechanics of Matrix Cracking in Brittle-Matrix Fiber Composites,” Acta Metall. 33(11): 2013–2021(1985).

    Article  Google Scholar 

  6. L. N. McCartney, “Mechanics of Matrix Cracking in Brittle-Matrix Fiber-Reinforced Composites,” Proc. R. Soc. London. A (409): 329–350 (1987).

    Article  ADS  Google Scholar 

  7. K. K. Chawla, in Composite Materials: Science and Engineering, Springer, New York, 1987, p.202.

    Google Scholar 

  8. M. Sutcu, “Weibull Statistics Applied to Fiber Failure In Ceramic Composites and Work of Fracture,” Acta Met. 37: 665–661(1989).

    Article  Google Scholar 

  9. R. N. Singh and A. R. Gaddipati, Mechanical Properties of a Uniaxially Reinforced Mullite-Silicon Carbide Composite,” J. Am. Ceram. Soc. 71: C100 (1988).

    Article  Google Scholar 

  10. E. Fitzer and R. Gadow, “Fiber-Reinforced Ceramic Composites Fabricated via the Sol/Gel Route,” Conference on Tailoring Multiphase and Composite Ceramics, Penn. State University, July (1985).

    Google Scholar 

  11. R. Naslain, in tailoring Multiphase and Composite Ceramics, Materials Science Research, Vol. 20, Plenum Press, New York, 145-164 (1986); Ed: R.E. Tressler, G.L. Messing, and G.C. Pantano.

    Google Scholar 

  12. K.L. Luthra, R.N. Singh, and M.K. Brun, “Toughened Silcomp Composites-Process and Preliminary Properties,” Am. Ceram. Soc. Bull. 72: 79–85 (1993).

    Google Scholar 

  13. D.P. Stinton, A.J. Caputo, and R.A. Lowden, “Synthesis of Fiber-Reinforced SiC Composites by Chemical Vapor Deposition,” Am. Ceram. Soc. Bull. 65[2]: 347–50 (1986).

    Google Scholar 

  14. M.S. Newkirk, H.D. Lesher, D.R. White, C.R. Kennedy, A.W. Urquhart, and T.D. Claar, “Preparation of Lanxide Ceramic Matrix Composites: Matrix Formation by (1987).

    Google Scholar 

  15. R. N. Singh, High-Temperature Mechanical Properties of a Uniaxially Reinforced Zircon-Silicon Carbide Composite,” J. Am. Ceram. Soc. 73[8]: 2399–2406 (1990).

    Article  Google Scholar 

  16. R. N. Singh and A. R. Gaddipati, “A Uniaxially Reinforced Zircon-SiC Composite,” J. Mater. Sci. 26: 957–962(1991).

    Google Scholar 

  17. R. N. Singh, “LPCVD of Boron Nitride from ß-Trichloroborazine”, in Tenth International Conference on Chemical Vapor Deposition (CVD-X), V. 87-7, p. 543 (1987), The Electrochem. Soc., Ed. G.W. Cullen.

    Google Scholar 

  18. M. Brun and R. N. Singh, “Effect of Thermal Expansion Mismatch and Fiber Coatings on the Fiber/Matrix Interfacial Shear Stress in CMCs,” Advanced Ceramic Materials. 3[5]: 506 (1988).

    Google Scholar 

  19. P. D. Jero, R. J. Kerans, and T. A. Parthasarathy, “Effect of Interfacial Roughness on the Frictional Stress Measured Using Pushout Tests,” J. Am. Ceram. Soc. 74[11]: 2793–801 (1991).

    Article  Google Scholar 

  20. R. N. Singh, “Influence of High-Temperature Exposure on Mechanical Properties of Zircon-Silicon Carbide Composites,” J. Mater. Sci. 26: 117–126 (1991).

    Article  ADS  Google Scholar 

  21. R. N. Singh and M. Sutcu, “Determination of Fiber-Matrix Interracial Properties in Ceramic Matrix Composites by a Fiber Pushout Technique,” J. Mater. Sci. 26: 2547–2556 (1991).

    Article  ADS  Google Scholar 

  22. R.N. Singh, “Interfacial Properties and High-Temperature Mechanical Behavior of Fiber-Reinforced Ceramic Composites,” Mater. Sci. and Eng. A 166: 185–198 (1993).

    Article  Google Scholar 

  23. J. A. DiCarlo, “High Temperature Properties of CVD Silicon Carbide Fibers”, Paper Presented at Int. Conf. on Whisker-and Fiber-Toughened Ceramics, Oak Ridge, TN, June 7-9, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Singh, R.N. (1995). Mechanical Response of Ceramic Composites at Elevated Temperatures. In: Bradt, R.C., Brookes, C.A., Routbort, J.L. (eds) Plastic Deformation of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1441-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1441-5_53

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1443-9

  • Online ISBN: 978-1-4899-1441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics