Skip to main content

Morphology and Deformation Characteristics of a CMC Based on a MLAS Vitroceramic Matrix

  • Chapter
Plastic Deformation of Ceramics

Abstract

This paper concerns morphological, microstructural and creep investigations at 1373K on unidirectional and 0/90° cross-ply SiCf-MLAS composites. For these materials, two different mechanisms arise with a threshold stress value of 200 MPa. At low stresses, we are in presence of a damage induced deformation with fiber/matrix decohesion and matrix microcracking (first in the 90° plies for the 2D composite), while at high stresses (> 200 MPa) the creep mechanism is based on the SiC fiber creep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbé F., Vicens J., and Chermant J.L., 1989, Creep behavior and microstructural characterization of a ceramic matrix composite, J. Mat. Sci. Let. 8:1026.

    Article  Google Scholar 

  • Backhaus-Ricoult M., Mozdzierz N., Imhoff D., Eveno P., Deschamps J., Pelissier B., Miloche M., and Bahezre C., 1994, Final Report of GS4C.

    Google Scholar 

  • Beyerle D.S., Spearing S.M., and Evans A.G., 1992, Damage mechanisms and the mechanical properties of a laminated 0/90 ceramic matrix composite, J. Am. Ceram. Soc., 75:3321.

    Article  Google Scholar 

  • Bunsell A.R., Simon G., Abe Y., and Akiyama M., 1988, Ceramic fibres, in: “Fibre Reinforcement for Composite Materials”, A.R. Bunsell, ed., Elsevier, Amsterdam, p427.

    Google Scholar 

  • Cao H., and Thouless M.D., 1990, Tensile tests of ceramic-matrix composites: theory and experiment, J. Am. Ceram Soc., 73:2091.

    Article  Google Scholar 

  • Chermant J.L., 1989, “Les Céramiques Thermomécaniques”, Les Presses du CNRS, Paris.

    Google Scholar 

  • Choury J.J., 1989, Thermostructural composite materials in aeronautics and space applications, in: “French Aerospace 1989 Aeronautical and Space Conference”, Dehli, Feb. 15-17; Bangalore, Feb. 20-22.

    Google Scholar 

  • Coster M., and Chermant J.L., 1985, “Précis d’Analyse d’Images”, Les Editions du CNRS, Paris. 1989, 2nd Edition, Les Presses du CNRS.

    Google Scholar 

  • Doreau F., 1994, Private communication.

    Google Scholar 

  • Haas A., Serra J., and Matheron G., 1967, Morphologie mathématique et granulométries en place, Ann. Mines, 11:736, 12:767.

    Google Scholar 

  • Hatch R.A., 1943, Phase equilibrium in the system Li2O-Al2O3-SiO2, Amer. Min., 28:471, cited by Strnad Z., 1986, in: “Glass-ceramic, liquid phase separation, nucleation and crystallization”, Glass Science and Technology 8, Elsevier, p76.

    Google Scholar 

  • Hilmas G.E., Holmes J.W., Bhatt R.T., and Di Carlo J.A., 1994, Tensile creep behavior and damage accumulation in a SiC-fiber/RBSN-matrix composite, To appear in Ceram. Eng. Sci. Proc.

    Google Scholar 

  • Holmes J.W., Park Y.H., and Jones J.W., 1993, Tensile creep and creep recovery behavior of a SiC-fiber-Si3N4-matrix composite, J. Am. Ceram. Soc., 76:1281.

    Article  Google Scholar 

  • Karkhanavala M.D., and Hummel F.A., 1953, Reactions in the system Li2O-MgOAl2O3-SiO2: I The cordierite-spodumene join, J. Am. Ceram. Soc., 36:393.

    Article  Google Scholar 

  • Kervadec D., 1992, Comportement en fluage sous flexion et microstructure d’un SiC-MLAS 1D, Thése de Doctorat de l’Université de Caen, Dec. 1992.

    Google Scholar 

  • Kervadec D., Coster M., and Chermant J.L., 1992, Morphology of SiQ-MLAS materials during high temperature tests, Mat. Res. Bull., 27: 967.

    Article  Google Scholar 

  • Larnac G., Lespade P., Pérès P. and J.M. Donzac, 1992, Fiber reinforced composites. A new class of glass-ceramic materials for thermomechanical applications, in: “Proc. 5th European Conference on Composites Materials”, A.R. Bunsell, J.F. Jamet and A. Mamiah, ed.

    Google Scholar 

  • Larac G., Lespade P., Pérès P., and Donzac J.M., 1993, High temperature glass-ceramic matrix composites: from the thermal and mechanical behavior to the realization of structures of complex shapes, in: “Proc. High Temperature Ceramic Matrix Composites, HT-CMCl, R. Naslain, R. Lamon and D. Doumeigts, ed., Woodhead Pub. Ltd., p777.

    Google Scholar 

  • Maupas H., 1994, To appear.

    Google Scholar 

  • Michelland S., Schiborr B., Coster M., Mordike B.L., and Chermant J.L., 1989, Size distribution of granular materials from unthresholded images, J. Microsc, 156:303.

    Article  Google Scholar 

  • Monthioux M., 1993, Nano et microstructure de composites SiC/LAS-M., 1993, Rev. Comp. Mat. Avancés, 3HS: 69.

    Google Scholar 

  • Poirier J.P., 1985, “Creep of Crystals: High Temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge University Press.

    Google Scholar 

  • Roy R., Roy D.M., and Osborn E.F., 1952, Compositional and stability relationships among the lithium aluminosilicates: eucryptite, spodumene, and petalite, J. Am. Ceram. Soc., 33: 152.

    Article  Google Scholar 

  • Ruterana P., Kervadec D., Maupas H., and Chermant J.L., 1995, Microstructure and evolution of a MLAS matrix composite, J. Microsc, To appear in January issue.

    Google Scholar 

  • Sbaizero O., and Evans A.G., 1986, Tensile and shear properties of laminated ceramic matrix composites, J. Am. Ceram. Soc. 69:481.

    Article  Google Scholar 

  • Sebire-Lhermitte I., Gomina M., and Vicens J., 1993, TEM observation of SiC-SiC composites, J. Microsc, 169:197.

    Article  Google Scholar 

  • Serra J., 1982, “Image Analysis and Mathematical Morphology”, Academic Press.

    Google Scholar 

  • Weber C.H., Löfvander J.P.A., and Evans A.G., 1994, The creep behavior of CAS/Nicalon continuous-fiber composites, J. Am. Ceram. Soc. in press.

    Google Scholar 

  • Wu X., and Holmes J.W., 1993, Tensile creep and creep-strain recovery behavior of silicon carbide fiber/calcium aluminosilicate matrix ceramic composites, J. Am. Ceram. Soc., 76:2695.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chermant, JL., Maupas, H., Kervadec, D. (1995). Morphology and Deformation Characteristics of a CMC Based on a MLAS Vitroceramic Matrix. In: Bradt, R.C., Brookes, C.A., Routbort, J.L. (eds) Plastic Deformation of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1441-5_51

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1441-5_51

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1443-9

  • Online ISBN: 978-1-4899-1441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics