Skip to main content

Creep Behavior in SiC Whisker-Reinforced Alumina Composite

  • Chapter
  • 515 Accesses

Abstract

Reinforcement by discontinuous whiskers or continuous fibers resulted in substantial improvements in fracture toughness and damage tolerance of ceramic-based composites over conventional monolithic ceramics. For instance, the addition of SiC whiskers led to substantial enhancements in fracture, slow crack growth, thermal shock, and static/cyclic fatigue resistances of monolithic aluminas.1–5 The increased toughness in these ceramic composites is derived from the operative toughening mechanisms of fiber/whisker bridging and pullout behind the crack tip.6 In addition, research also showed that the alumina composites retained their strength and fracture toughness to temperatures of 1000 – 1100°C in an oxidizing environment.3 This was also coupled with the much superior resistance to elevated-temperature delayed failure and creep deformation in alumina composites as compared with polycrystalline fine-grained aluminas.3, 7 These excellent mechanical properties indicate that the alumina-SiC composites exhibit potential for high-temperature structural applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. N. Tiegs and P. F. Becher, “Thermal shock behavior of an alumina-SiC whisker composite,” J. Am. Ceram. Soc., 70 [5], C109–C111 (1987).

    Article  Google Scholar 

  2. P. F. Becher, T. N. Tiegs, J. C. Ogle and W. H. Warwick, “Toughening of ceramics by whisker reinforcement,” pp. 61–73, in: “Fracture Mechanics of Ceramics, Vol. 7,” R. C. Bradt, A. G. Evans, D.P.H. Hasselman and F. F. Lange, eds., Plenum Publ. Corp., New York, (1986).

    Chapter  Google Scholar 

  3. P. F. Becher, P. Angelini, W. H. Warwick, and T. N. Tiegs, “Elevated-temperature-delayed failure of alumina reinforced with 20 vol% silicon carbide whiskers,” J. Am. Ceram. Soc., 73 [1], 91–96 (1990).

    Article  Google Scholar 

  4. L. X. Han and S. Suresh, “High-temperature failure of an alumina-silicon carbide composite under cyclic loads: mechanisms of fatigue crack-tip damage,” J. Am. Ceram. Soc., 72 [7] 1233–38 (1989).

    Article  Google Scholar 

  5. R. H. Dauskardt, B. J. Dalgleish, D. Yao, R. O. Ritchie, and P. F. Becher, “Cyclic fatigue-crack propagation in a silicon carbide whisker-reinforced alumina composite: role of load ratio,” J. Mater. Sci. 28 (1993) 3258–3266.

    Article  ADS  Google Scholar 

  6. P. F. Becher, C. H. Hsueh, P. Angelini, and T. N. Tiegs, “Toughening behavior in whisker-reinforced ceramic matrix composites,” J. Am. Ceram. Soc., 71 [12] 1050–61 (1988).

    Article  Google Scholar 

  7. A. H. Chokshi and J. R. Porter, “Creep deformation of an alumina matrix composite reinforced with silicon carbide whiskers,” J. Am. Ceram. Soc., 68 [6], C144–C145 (1987).

    Google Scholar 

  8. P. F. Becher and T. N. Tiegs, “Temperature dependence of strengthening by whisker reinforcement: SiC whisker-reinforced alumina in air,” Advanced Ceramic Materials, Vol. 3, No. 2, pp. 148–153 (1988).

    Google Scholar 

  9. L. X. Han, R. Warren, and S. Suresh, “An experimental study of toughening and degradation due to microcracking in a ceramic composite,” Acta Metall. Mater. Vol. 40, No.2, pp. 259–274 (1992).

    Article  Google Scholar 

  10. G. D. Quinn, “Fracture mechanism maps for advanced structural ceramics: part 1 methodology and hot-pressed silicon nitride results,” J. Mater. Sci. 25 (1990) 4361–4376.

    Article  ADS  Google Scholar 

  11. G. D. Quinn, “Fracture mechanism maps for advanced structural ceramics: part 2 sintered silicon nitride results,” J. Mater. Sci. 25 (1990) 4377–4392.

    Article  ADS  Google Scholar 

  12. J. R. Porter and A. H. Chokshi, “Creep performance of silicon carbide whisker-reinforced alumina,” pg. 919–28, in: “Ceramic Microstructures’ 86: The Role of Interfaces,” J. A. Pask and A. G. Evans, eds., Plenum Press, New York, (1987).

    Google Scholar 

  13. A. R. de Arellano-López, A. Domínguez-Rodríguez, K. C. Goretta, and J. L. Routbort, “Plastic deformation mechanisms in SiC-whisker-reinforced alumina,” J. Am. Ceram. Soc., 76 [6], 1425–32 (1993).

    Article  Google Scholar 

  14. J. R. Porter and J. J. Ratto, “Microstructural aspects of creep in SiC whisker-reinforced Al2O3,” pp. 381-89, in: “Proceedings of Metals & Ceramics Matrix Composites: Processing, Modeling & Mechanical Behavior,” R. B. Bhagat, A. H. Clauer, P. Kumar and A. M. Ritter, eds., the Minerals, Metals & Materials Society, (1990).

    Google Scholar 

  15. P. Lipetzky, S. R. Nutt, D. A. Koester, and R. F. Davis, “Atmospheric effects on compressive creep of SiC-whisker-reinforced alumina,” J. Am Ceram. Soc., 74 [6] 1240–47 (1991).

    Article  Google Scholar 

  16. H. T. Lin and P. F. Becher, “Creep behavior of a SiC whisker reinforced alumina,” J. Am. Ceram. Soc., 73 [5], 1378–1381 (1990).

    Article  Google Scholar 

  17. H. T. Lin and P. F. Becher, “High-temperature creep deformation of alumina-SiC-whisker composites,” J. Am. Ceram. Soc., 74 [8] 1886–93 (1991).

    Article  Google Scholar 

  18. H. T. Lin and P. F. Becher, “Grain size effect on creep deformation of alumina-SiC composites,” submitted to J. Am. Ceram. Soc

    Google Scholar 

  19. H. T. Lin and P. F. Becher, “Effect of whisker aspect ratio on creep of alumina-SiC composites,” to be published.

    Google Scholar 

  20. G. W. Hollenberg, G. R. Terwilliger, and R. S. Gordon, “Calculation of stress and strain in four-point bending creep test,” J. Am. Ceram. Soc., 54 [4], 196–199 (1971).

    Article  Google Scholar 

  21. A. G. Robertson, D. S. Wilkinson, and C. H. Cáceres, “Creep and creep fracture in hot-pressed alumina,” J. Am. Ceram. Soc., 74 [5] 915–21 (1991).

    Article  Google Scholar 

  22. H. T. Lin and P. F. Becher, “Effect of applied stress state on creep response of alumina-SiC-whisker composite,” to be published.

    Google Scholar 

  23. A. H. Heuer, N. J. Tighe, and R. M. Cannon, “Plastic deformation of fine-grained alumina (Al2O3): II. basal slip and nonaccommodated grain-boundary sliding,” J. Am. Ceram. Soc., 63 [1-2] 53–58 (1980).

    Article  Google Scholar 

  24. T. Sugita and J. A. Pask, “Creep of doped polycrystalline Al2O3,” J. Am. Ceram. Soc., 53 [11] 609–13 (1970).

    Article  Google Scholar 

  25. S. M. Wiederhorn, D. E. Roberts, T.-J. Chung, and L. Chuck, “Damage-enhanced creep in a siliconized silicon carbide,” J. Am. Ceram. Soc., 71 [7] 602–08 (1988).

    Article  Google Scholar 

  26. D. F. Carroll and R. E. Tressler, “Effect of creep damage on the tensile creep behavior of a siliconized silicon carbide,” J. Am. Ceram. Soc., 72 [1] 49–53 (1990).

    Article  Google Scholar 

  27. T. N. Tiegs and P. F. Becher, “Sintered Al2O3-SiC-whisker composites,” Am. Ceram. Bull., 66 [2] 339–42 (1987).

    Google Scholar 

  28. A. H. Heuer, “The role of MgO in the sintering of alumina,” J. Am. Ceram. Soc., 62 [5-6] 317–18 (1979).

    Article  Google Scholar 

  29. P. F. Becher “Recent advances in whisker-reinforced ceramics,” Annu. Rev. Mater. Sci. 20, 179–95 (1990).

    Article  ADS  Google Scholar 

  30. A. H. Heuer, R. M. Cannon, and N. J. Tighe, “Plastic deformation in fine-grained ceramics,” pp. 339–65, in: “Proceedings of the 15th Sagamore Army Materials Research Conference, Ultrafine-Grain Ceramics,” J. J. Burke, N. L. Reed, and V. Weiss, eds., Syracuse University Press, New York, (1970).

    Chapter  Google Scholar 

  31. T. G. Langdon, Grain boundary deformation process,” pp. 101–126, in: “Deformation of Ceramic Materials II,” R. E. Tressler and R. C. Bradt, eds., Plenum Press, New York, (1984).

    Google Scholar 

  32. N. K. Sinha, “Grain boundary sliding in polycrystalline materials,” Phil. Mag. A, 40, 825–42 (1979).

    Article  ADS  Google Scholar 

  33. T. G. Langdon, “Grain boundary sliding as a deformation mechanism during creep,” Phil. Mag. A, 22, 689–700 (1970).

    Article  Google Scholar 

  34. A. H. Chokshi, “An evaluation of the grain-boundary sliding contribution to creep deformation in polycrystalline alumina,” J. Mater. Sci., 25 (1990) 3221–3228.

    Article  ADS  Google Scholar 

  35. J. R. Porter, “Dispersion processing of creep resistant whisker-reinforced ceramic-matrix composites,” Mater. Sci. Eng., A107, 127–132 (1989).

    Google Scholar 

  36. J. R. Porter, “Observations of non-steady creep in SiC whisker reinforced alumina,” p. 147, in: “Proc. Int. Conf. on whisker-and-fiber-toughened ceramics,” P. F. Becher, R. A. Bradley, and D. R. Johnson, eds., ASM, Metals Park, (1988).

    Google Scholar 

  37. S. R. Nutt, “Microstructure and growth model for rice-hull-derived SiC whiskers,” J. Am. Ceram. Soc., 71 [3] 149–156 (1988).

    Article  Google Scholar 

  38. R. L. Tsai and R. Raj, “Creep fracture in ceramics containing a small amount of liquid phase,” Acta Metall., 30, 1043–58 (1982).

    Article  Google Scholar 

  39. S. W. Wiederhorn, B. J. Hockey, R. F. Krause Jr., and K. Jakus, “Creep and fracture of a vitreous-bonded alumina oxide,” J. Mater. Sci, 21, (1986) 810–24.

    Article  ADS  Google Scholar 

  40. M. H. Lewis, G. R. Heath, S. M. Winder, and R. J. Lumby, “High temperature creep and fracture of β’-Si3N4 ceramic alloys,” pp. 605–16, in: “Materials Science Research, Vol. 18, Deformation of Ceramic Materials II,” R. E. Tressler and R. C. Bradt, eds., Plenum Press, New York, (1984).

    Chapter  Google Scholar 

  41. R. D. Nixon, S. Chevacharoenkul, M. L. Huckbee, S. T. Buljan, and R. F. Davis, “Deformation behavior of SiC whisker reinforced Si3N4,” pp. 295-302, in: MRS Symposium Proceedings, Vol. 78, Advanced Structural Ceramics,” P. F. Becher, M. V. Swain, and S. Somiya, eds., Materials Research Society, Pittsburgh, PA, (1987).

    Google Scholar 

  42. M. H. Lewis, S. Mason, and A. Szweda, “Syalon ceramic for application at high temperature and stress,” pp. 175–190, in: “Non-Oxide Technical and Engineering Ceramics,” S. Hampshire, ed., Elsevier Applied Science, New York, (1986).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, HT., Becher, P.F. (1995). Creep Behavior in SiC Whisker-Reinforced Alumina Composite. In: Bradt, R.C., Brookes, C.A., Routbort, J.L. (eds) Plastic Deformation of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1441-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1441-5_48

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1443-9

  • Online ISBN: 978-1-4899-1441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics