Skip to main content

Dislocation Mechanisms in Alpha SiC Deformed at High Temperature

  • Chapter
Plastic Deformation of Ceramics

Abstract

Recently the microplasticity of SiC single crystals has been investigated by several groups 1 to 6 in a large temperature range (up to 1850°C) and by using different deformation modes (uniaxial compressive tests, creep tests, hardness indentations). Experiments were conducted on the hexagonal 6H SiC polytype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Fujita, K. Maeda, and S. Hyodo, Dislocation glide motion in 6H SiC single crystals subjected to high-temperature deformation, Phil. Mag. A 55:203 (1987).

    Article  ADS  Google Scholar 

  2. K. Maeda, K. Suzuki, S. Fujita, M. Ichihara, and S. Hyodo, Defects in plastically deformed 6H SiC single crystals studied by transmission electron microscopy, Phil. Mag. A 57:573 (1988).

    Article  ADS  Google Scholar 

  3. H. Suematsu, T. Suzuki, and T. Iseki, Kinking and cracking caused by slip in single crystals of silicon carbide, J. Am. Ceram. Soc. 74:173 (1991).

    Article  Google Scholar 

  4. G.S. Corman, Creep of 6H α-silicon carbide single crystals J. Am. Ceram. Soc. 75:3421 (1992).

    Article  Google Scholar 

  5. G.R. Sawyer, P.M. Sargent, and T.F. Page, Microhardness anisotropy of silicon carbide, J. Mat. Sci. 15:1001 (1980).

    Article  ADS  Google Scholar 

  6. K. Niihara, Slip systems and plastic deformation of silicon carbide single crystals at high temperatures, J. less-common Metals 65:155 (1979).

    Article  Google Scholar 

  7. C.H. Carter, R.F Davis, and J. Bentley, Kinetics and mechanisms of high-temperature creep in silicon carbide: I, reaction-bonded, J. Am. Ceram. Soc. 67:409 (1984).

    Article  Google Scholar 

  8. C.H. Carter Jr., R.F. Davis, and J. Bentley, Kinetics and mechanisms of high-temperature creep in silicon carbide: II, chemically vapor deposited, J. Am. Ceram. Soc. 67:732 (1984).

    Article  Google Scholar 

  9. J.E. Lane, C.H. Carter Jr., and R.F. Davis, Kinetics and mechanisms of high-temperature creep in silicon carbide: III, sintered α-silicon carbide, J. Am. Ceram. Soc. 71:281 (1988).

    Article  Google Scholar 

  10. J.L. Demenet, J. Rabier, and H. Garem, Microstructure of sintered α-SiC deformed below 1000°C, 1989, « Microscopy of semiconductor materials conference », Oxford, Institute of Physics Conference series N°100 (Bristol Institute of Physics) Section 5:445.

    Google Scholar 

  11. C. Carry, and A. Mocellin, High temperature creep of dense fine grained silicon carbides, 1984, « Materials Science Research » edited by R.E Tressler and R.C. Bradt, Plenum, New York, 18:391.

    Google Scholar 

  12. M.L. Duval-Rivière, Etude microstructurale des mécanismes de déformation à haute température du carbure de silicium polycristallin a, 1994, Ph.D Thesis, Université de Caen, France.

    Google Scholar 

  13. S.J. Lee, and J. Vicens, Interaction between Shockley dislocations and perfect screw dislocations with large Burgers vectors in high temperature deformed α-SiC, Phil. Mag. A 65:551 (1992).

    Article  ADS  Google Scholar 

  14. A. Couret, and D. Caillard, An in-situ study of prismatic glide in magnesium-I. The rate controlling mechanism, Acta metall., 33:1447 (1985).

    Article  Google Scholar 

  15. P. Pirouz, J.W. Yang, J.A. Powell, and F. Ernst, The role of dislocations in the 3C ⇔ 6H SiC polytypic transformation, 1991, « Microscopy of Semiconductor Materials Conference », Oxford, Institute of Physics Conference series N°117 (Bristol Institute of Physics) Section 3:149.

    Google Scholar 

  16. F. Louchet, and J. Thibault-Desseaux, Dislocation cores in semiconductors. From the « shuffle or glide » dispute to the « glide and shuffle « partnership, Rev. Phys. Appl., 22:207 (1987).

    Article  Google Scholar 

  17. M.L. Duval-Rivière, and J. Vicens, Polytypic transformation and gliding behaviour in polycrystalline α-SiC deformed by compression, Phil. Mag. A 69:451 (1994).

    Article  ADS  Google Scholar 

  18. N.W. Jepps, and T.F. Page, Polytypic transformations in silicon carbide, 1983, Progress in crystal growth and characterization, Crystal growth and characterization of polytype structures, edited by P. Krishna (Oxford, Pergamon), 7:259.

    Google Scholar 

  19. D. Pandey, and P. Krishna, The origin of polytype structures, 1983, Progress in crystal growth and characterization, Crystal growth and characterization of polytype structures, edited by P. Krishna (Oxford, Pergamon), 7:213.

    Google Scholar 

  20. P. Pirouz, Deformation mode in silicon slip or twinning?, Script. Met., 21:1463 (1987).

    Article  Google Scholar 

  21. P. Pirouz, On twinning and polymorphic transformation in compound semiconductors, Script. Met., 23:401 (1989).

    Article  Google Scholar 

  22. P. Pirouz, Dislocation mechanisms for twinning and polytypic transformations in semiconductors, 1989, « Microscopy of Semiconductor Materials Conference », Oxford, Institute of Physics Conference series N°104 (Bristol Institute of Physics) Chap 1:49.

    Google Scholar 

  23. P. Pirouz, and P.M. Hazzledine, Cross-slip and twinning in semiconductors, Script. Met, 25:1167 (1991).

    Article  Google Scholar 

  24. P.A. Stadelmann, EMS-A software package for electron diffraction analysis and HREM image simulation in materials science, Ultramicroscopy, 21:131 (1987).

    Article  Google Scholar 

  25. L. S. Ramsdell, Studies on silicon carbide, Amer. Min., 32:64 (1947).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Duval-Rivière, ML., Vicens, J. (1995). Dislocation Mechanisms in Alpha SiC Deformed at High Temperature. In: Bradt, R.C., Brookes, C.A., Routbort, J.L. (eds) Plastic Deformation of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1441-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1441-5_40

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1443-9

  • Online ISBN: 978-1-4899-1441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics