Skip to main content

A Granular Flow Approach to Fine-Grain Superplasticity

  • Chapter
Plastic Deformation of Ceramics

Abstract

In materials science, the phenomenological term “superplasticity” is used to characterize a material’s capacity to undergo very large plastic extensile strain without necking or fracture (Edington et al., 1976; Padmanabhan and Jones, 1980; Baudelet and Suery, 1985; Mukherjee et al., 1989; Mayo et al., 1990). This property tends to be associated either with phase transformation, when it is termed “transformational superplasticity”, or with very fine grain size, when it is termed “fine-grain superplasticity”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aneli, A. and Mukherjee, A.K., 1980, A model for the rate-controlling mechanism in superplasticity, Mater. Sci. Eng. 45:61–70.

    Article  Google Scholar 

  • Ashby, M.F. and Verrall, R.A., 1973, Diffusion-accommodated flow and superplasticity, Acta Metall. 21:149–163.

    Article  Google Scholar 

  • Baudelet, B. and Suery, M., eds., 1985, “Superplasticity,” Editions CNRS, Paris.

    Google Scholar 

  • Chokshi, A.H. and Langdon, T.G., 1985, The role of interfaces in superplastic deformation, p.2.1-2.15 in:. “Superplasticity,” Baudelet, B. and Suery, M., eds., Editions CNRS, Paris.

    Google Scholar 

  • Coble, R.L., 1963, A model for boundary diffusion controlled creep in polycrystalline materials, J. Appl. Phys. 34:1679–1682.

    Article  ADS  Google Scholar 

  • Edington, J.W., Melton, K.N. and Cutler, C.P., 1976, Superplasticity, Progress in Materials Sci., 21:61–158.

    Article  Google Scholar 

  • Geckinli, A.E., 1983, Grain boundary sliding model for superplasticity, Metal Sci., 17:12–18.

    Google Scholar 

  • Hart, E. W., 1970, A phenomenological theory for plastic deformation of polcrystalline metals, Acta Metall. 18:599–610.

    Article  Google Scholar 

  • Kaibyshev, O.A., Valiev, R.Z. and Emaletdinov, A.K., 1985, Deformation mechanisms and the theory of structural superplasticity of metals, phys. stat. sol. (a), 90:197–206.

    Article  ADS  Google Scholar 

  • Langdon, T.G., 1982, Experimental observations in superplasticity, p.27-40 in: “Superplastic Forming of Structural Alloys,” Paton, N.E. and Hamilton, C.H., eds., Met. Soc. AIME, New York.

    Google Scholar 

  • Mukherjee, A.K., Bieler T.R. and Chokshi, A.H., 1989, p.207 in: Materials Architecture; Proc. 10th Risø Int. Symp. on Metallurgy and Material Science, Bilde-Sørensen, J. B., ed., Risø Nat. Lab., Roskilde, Denmark.

    Google Scholar 

  • Padmanabhan, K.A. and Davies, G.J., 1980, “Superplasticity,” Springer-Verlag, Berlin and New York.

    Book  Google Scholar 

  • Paterson, M.S., 1990, Superplasticity in geological materials, p.303-312 in: “Superplasticity in Metals, Ceramics, and Intermetallics,” Mayo, M.J., Kobayashi, M. and Wadsworth, J., eds., Symp. Proc. 196, MRS, Pittsburgh, Pa. (1990).

    Google Scholar 

  • Paterson, M.S., 1995, A theory for granular flow accommodated by material transfer via an intergranular fluid, Tectonophysics, in press.

    Google Scholar 

  • Raj, R. and Ashby, M.F., 1971, On grain boundary sliding and diffusional creep, Metall. Trans. 2:1113–1127.

    Article  Google Scholar 

  • Scheidegger, A.E., 1974, “The Physics of Flow through Porous Media,” 3rd. Ed., Univ. of Toronto Press, Toronto.

    Google Scholar 

  • Schmid, S. M., Boland, J. N. and Paterson, M.S., Superplastic flow in limestone, Tectonophysics, 43:257-291.

    Google Scholar 

  • Spingarn, J. R. and Nix, W. D., 1978, Diffusional creep and diffusionally accommodated grain rearrangement, Acta Metall. 26:1389–1398.

    Article  Google Scholar 

  • Vermeer, P.A. and de Borst, R., 1984, Non-associated plasticity for soils, concrete and rock, Heron 29(3): 1–64.

    Google Scholar 

  • Vesic, A.S. and Clough, G.W., 1968, Behavior of granular materials under high stress, J. Soil Mech.Found. Div., Proc. Am. Soc. Civil Eng. 94:661–688.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Paterson, M.S. (1995). A Granular Flow Approach to Fine-Grain Superplasticity. In: Bradt, R.C., Brookes, C.A., Routbort, J.L. (eds) Plastic Deformation of Ceramics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1441-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1441-5_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1443-9

  • Online ISBN: 978-1-4899-1441-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics