Skip to main content

Part of the book series: Lasers, Photonics, and Electro-Optics ((LPEO))

  • 157 Accesses

Abstract

As noted in Chapter 4, mathematical models are useful for understanding the mechanism of the chemical reaction and deposition process; the relative importance of various process parameters such as the laser irradiance, speed of the substrate with respect to the laser beam, laser pulselength, and wavelength; to analyze the LCVD experimental data; and to design and control the LCVD system in an optimum way. The mathematical modeling of photolytic LCVD differs from pyrolytic LCVD modeling in that the former involves photochemical reactions, whereas, the latter relies on the thermal decomposition of the reactant molecules. However, the transport mechanisms for the distribution of various species inside the deposition chamber are similar in the pyrolytic and photolytic processes and, for this reason, the transport equations are identical for the two processes. The source term, which represents the rate of production of the film material, is different for these two processes because it involves the Arrhenius rate expression and the laser intensity (or photon flux) for the pyrolytic and photolytic LCVD processes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bellman, R., Kalaba, R. E., and Lockett, J. A. (1966), Numerical Inversion of the Laplace Transform: Applications to Biology, Economics, Engineering, and Physics, American Elsevier, New York.

    MATH  Google Scholar 

  • Bilenchi, R., Gianinoni, I., Musci, M. (1982), J. Appl. Phys. 53, 6479.

    Article  Google Scholar 

  • Bird, G. A. (1976), Molecular Gas Dynamics, Clarendon, Oxford.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1960), Transport Phenomena, Wiley, New York.

    Google Scholar 

  • Baunauer, S., Emmett, P. H., and Teller, E. (1938), J. Am. Chem. Soc. 60, 309.

    Article  Google Scholar 

  • Byrd, P. F., and Friedman, M. D. (1954), Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, Berlin, pp. 9, 176, 297.

    MATH  Google Scholar 

  • Carnahan, B., Luther, H. A., and Wilkes, J. O. (1969), Applied Numerical Methods, Wiley, New York, pp. 69, 342, 433.

    MATH  Google Scholar 

  • Carslaw, H. S., and Jaeger, J. C. (1959), Conduction of Heat in Solids, 2nd Ed., Clarendon, Oxford, p. 494.

    Google Scholar 

  • Chandrasekhar, S. (1943), Stochastic Problems in Physics and Astronomy, Rev. Mod. Phys. 15, 1–89.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, C. J. (1987), Kinetic Theory of Laser Photochemical Deposition, J. Vac. Sci. Technol. A5, 3386.

    Google Scholar 

  • Chen, C. J., and Osgood Jr., R. M. (1983), Chem. Phys. Lett. 98, 363.

    Article  Google Scholar 

  • Coronell, D. G., and Jensen, K. F. (1992), Analysis of Transition Regime Flows in Low Pressure Chemical Vapor Deposition Reactors using the Direct Simulation Monte Carlo Method, J. Electrochem. Soc. 139, 2264.

    Article  Google Scholar 

  • Duncan, M. A., Dietz, T. G., and Smalley, R. E. (1979), Efficient Multiphoton Ionization of Metal Carbonyls Cooled in a Pulsed Supersonic Beam, Chem Phys. 44, 415.

    Article  Google Scholar 

  • Ehrlich, D. J., Osgood, R. M., and Deutsch, T. F. (1980), IEEEJ. Quant. Electron. QE-16, 1233.

    Article  Google Scholar 

  • Ehrlich, D. J., and Osgood, R. M. (1981), Chem. Phys. Lett. 79, 381.

    Article  Google Scholar 

  • Ehrlich, D. J., and Tsao, J. Y. (1983), A Review of Laser Microchemical Processing, J. Vac. Sci. Technol B1, 969.

    Google Scholar 

  • Fisanick, G. J., Gedanken, A., Eichelberger, IV, T. S., Kuebler, N. A., and Robin, M. B. (1981), Multiphoton Ionization Spectroscopy of Organometallics: The Cr(CO)6, Cr(CO)3C6H6, Cr(C6H6)2 Series, J. Chem. Phys. 75, 5215.

    Article  Google Scholar 

  • Flint, J. H., Meunier, M., Adler, D., and Haggerty, J. S. (1984), a-Si: H Films Produced from Laser-Heated Gases: Process Characteristics and Film Properties, in: Laser-Assisted Deposition, Etching, and Doping, SPIE Proc. Vol. 459, S. D. Allen, ed., SPIE—The International Society for Optical Engineering, Washington, pp. 66–70.

    Chapter  Google Scholar 

  • Foord, J. S., and Jackson, J. B. (1986), Surf. Sci. 171, 197.

    Article  Google Scholar 

  • Freeman, D. L., and Doll, J. D. (1983), J. Chem. Phys. 78, 6002.

    Article  Google Scholar 

  • Fuchs, C., Boch, E., Fogarassy, E., Aka, B., and Siffert, P. (1988), Two-Photon Absorption Cross-Section for Silane under Pulsed ArF (193 nm) Excimer Laser Irradiation, in: Laser and Particle Beam Chemical Processing for Microelectronics, Materials Research Soc. Symp. Proc, Vol. 101, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, pp. 361–365.

    Google Scholar 

  • Gattuso, T. R., Meunier, M., Adler, D., and Haggerty, J. S. (1983), IR Laser-Induced Deposition of Silicon Thin Films, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Materials Research Soc. Symp. Proc., Vol. 17, Osgood, R. M., Brueck, S. R. J., and Schlossberg, H. R., eds., North-Holland, Amsterdam, pp. 215–222.

    Google Scholar 

  • Gerrity, D. P., Rothberg, L. J., and Vaida, V. (1980), Multiphoton Ionization of Metal Atoms Produced in the Photodissociation of Group VI Hexacarbonyls, Chem. Phys. Lett. 74, 1.

    Article  Google Scholar 

  • Gradshteyn, I. S., and Ryzhik, I. M. (1980), Table of Integrals, Series, and Products, Academic, New York, 66.

    MATH  Google Scholar 

  • Guest, P. G. (1961), The Solid Angle Subtended by a Cylinder, Rev. Sci. Instr. 32, 164.

    Article  Google Scholar 

  • Ho, W. (1988), Comments, Cond. Mat. Phys. 13, 293.

    Google Scholar 

  • Kar, A., and Mazumder, J. (1988), One-Dimensional Finite-Medium Diffusion Model for Extended Solid Solution in Laser Cladding of Hf on Nickel, Acta. Metal. 36, 701.

    Article  Google Scholar 

  • Karny, Z., Naaman, R., and Zare, R. N. (1978), Production of Excited Metal Atoms by UV Multiphoton Dissociation of Metal Alkyl and Metal Carbonyl Compounds, Chem. Phys. Lett. 59, 33.

    Article  Google Scholar 

  • Kato, S., and Takeuchi, K. (1992), Infrared Multiphoton Dissociation by an Unfocussed Beam in an Optically Thick Medium: An Analytical Method for Reaction Yields, Appl. Opt. 31, 2825.

    Article  Google Scholar 

  • Krchnavek, R. K., Gilgen, H. H., and Chen, J. C., Shaw, P. S., Lieata, T. J., and Osgood, Jr., R. M. (1987), J. Vac. Sci. Technol. B5, 20.

    Google Scholar 

  • Lyman, J. L., Quigley, G. P., and Judd, O. P. (1986), Single-Infrared-Frequency Studies of Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, in: Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, Cantrell, C. D., ed., Vol. 35 of Topics in Current Physics, Springer-Verlag, Berlin, pp. 9–94.

    Chapter  Google Scholar 

  • Masket, A. V. (1957), Solid Angle Contour Integrals, Series, and Tables, Rev. Sci. Instr. 28, 191.

    Article  Google Scholar 

  • Mayer, J. E., and Mayer, M. G. (1940), Statistical Mechanics, Wiley, New York.

    MATH  Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953), Equation of State Calculations by Fast Computing Machines, J. Chem. Phys. 21, 1087.

    Article  Google Scholar 

  • Meunier, M., Gattuso, T. R., Adler, D., Haggerty, J. S. (1983), Appl. Phys. Lett. 43, 273.

    Article  Google Scholar 

  • Morgan, K. Z., and Emerson, L. C. (1967), Dose from Extended Sources of Radiation, in: Principles of Radiation Protection: A Textbook of Health Physics, Morgan, K. G., and Turner, J. E., eds., Wiley, New York, pp., 268–300.

    Google Scholar 

  • özisik, M. N., and Murray, R. L. (1974), On the Solution of Linear Diffusion Problems with Variable Boundary Parameters, ASME J. Heat Transfer, 96C, 48.

    Article  Google Scholar 

  • Roach, G. F. (1982), Green’s Functions, 2nd Ed., Cambridge University Press, London.

    MATH  Google Scholar 

  • Rockwell, III, T., ed. (1956), Reactor Shielding Design Manual, Van Nostrand, New York, pp. 400–404.

    Google Scholar 

  • Siegel, R., and Howell, J. R. (1981), Thermal Radiation Heat Transfer, McGraw-Hill, New York.

    Google Scholar 

  • Sneddon, I. N. (1972), The Use of Integral Transforms, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Tsao, J. Y., and Ehrlich, J. (1984a), Recent Advances in UV Laser Photodeposition, in: Laser-Controlled Chemical Processing of Surfaces, Materials Research Soc. Symp. Proc., Vol. 29, Johnson, A. W., Ehrlich, D. J., and Schlossberg, H. R., eds., North-Holland, Amsterdam, pp. 115–126.

    Google Scholar 

  • Tsao, J. Y., and Ehrlich, D. J. (1984b), Surface and Gas Processes in Photodeposition in Small Zones, in: Laser-Assisted Deposition, Etching, and Doping, SPIE Proc. Vol. 459, S. D. Allen, ed., SPIE—The International Society for Optical Engineering, Washington, pp. 2–8.

    Chapter  Google Scholar 

  • Tsao, J. Y., Zeiger, H. J., and Ehrlich, D. J. (1985), Measurement of Surface Diffusion by Laser-Beam-Localized Surface Photochemistry, Surf. Sci. 160, 419.

    Article  Google Scholar 

  • West, G. A., and Gupta, A. (1984), Laser-Induced Chemical Vapor Deposition of Silicon Nitride Films, in: Laser-Controlled Chemical Processing of Surfaces, Materials Research Soc. Symp. Proc., Vol. 29, Johnson, A. W., Ehrlich, D. J., and Schlossberg, H. R., eds., North-Holland, Amsterdam, pp. 61–66.

    Google Scholar 

  • Wood, T. H., White, J. C., and Thacker, B. A. (1983a), Ultraviolet Photodecomposition for Metal Deposition: Gas Versus Surface Phase Processes, Appl. Phys. Lett. 42, 408.

    Article  Google Scholar 

  • Wood, T. H., White, J. C., and Thacker, B. A. (1983b), UV Photodecomposition for Metal Deposition: Gas vs. Surface Phase Processes, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Materials Research Soc. Symp. Proc., Vol. 17, Osgood, R. M., Brueck, S. R. J., and Schlossberg, H. R., eds., North-Holland, Amsterdam, pp. 35–41.

    Google Scholar 

  • Yardley, J. T., Gitlin, B., Nathanson, G., and Rosan, A. M. (1981), Fragmentation and Molecular Dynamics in the Laser Photodissociation of Iron Pentacarbonyl, J. Chem. Phys. 74, 370.

    Article  Google Scholar 

  • Yener, Y., and özisik, M. N. (1974), On the Solution of Unsteady Conduction in Multiregion Finite Media with Time Dependent Heat Transfer Coefficient, Proc. 5th International Heat Transfer Conference, Vol. I, American Institute Chemical Engineers, New York, pp. 188–192.

    Google Scholar 

  • Young, D. M., and Crowell, A. D. (1962), Physical Adsorption of Gases, Butterworth, London.

    Google Scholar 

  • Zeiger, H. J., Tsao, J. Y., and Ehrlich, D. J. (1985), Technique for Measuring Surface Diffusion by Laser-Beam-Localized Surface Photochemistry, J. Vac. Sci. Technol. B3, 1436.

    Google Scholar 

  • Zeiger, H. J., and Ehrlich, D. J. (1989), Lateral Confinement of Microchemical Surface Reactions: Effects on Mass Diffusion and Kinetics, J. Vac. Sci. Technol. B7, 466.

    Google Scholar 

  • Zeiger, H. J., Ehrlich, D. J., and Tsao, J. Y. (1989), Transport and Kinetics, in: Laser Microfabrication: Thin Film Processes and Lithography, Ehrlich, D. J., and Tsao, J. Y., eds., Academic, New York, pp. 285–330.

    Chapter  Google Scholar 

  • Zeiri, Y., Atzmony, U., and Bloch, J. (1991), Monte Carlo Simulation of Laser Induced Chemical Vapor Deposition, J. Appl. Phys. 69, 4110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mazumder, J., Kar, A. (1995). Photolytic LCVD Modeling. In: Theory and Application of Laser Chemical Vapor Deposition. Lasers, Photonics, and Electro-Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1430-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1430-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1432-3

  • Online ISBN: 978-1-4899-1430-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics