Skip to main content

Part of the book series: Lasers, Photonics, and Electro-Optics ((LPEO))

  • 162 Accesses

Abstract

In laser-aided materials processing, the heat, mass, and momentum transport processes depend on the intensity of the incident laser beam and the laser-materials interaction time, as shown in Fig. 1.1 [Mazumder (1991)]. The laser power density is about 103 to 104W/cm2 for laser surface hardening, where heat conduction and mass diffusion in the solid phase are important in order to determine the dwell time required for phase transformation. For surface melting and welding, the power density is about 105 to 107W/cm2, and convection in the melt pool becomes significant. During laser surface alloying and cladding, where the power density is about 105 to 106W/cm2, the convection heat and mass transfer processes affect the nonequilibrium microstructure and composition of the solidified material. Vaporization and plasma formation affect the surface contour, laser energy partitioning, and the depth of penetration during laser welding. When the power density exceeds 107W/cm2, such as in laser drilling, vaporization and gas dynamical effects become important. For laser chemical vapor deposition (LCVD) processes, the laser power density is about 103 to 104 W/cm2, the substrate is not melted, only heat conduction occurs in the substrate, mass diffusion in the gas phase is important at low gas pressures, and convection in the gas phase becomes important at high gas pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerhalt, J., and Galbraith, H. (1978), Collisionless Multiple Photon Excitation of SF6: A Comparison of Anharmonic Oscillators with and without Octahedral Splitting in the Presence of Rotational Effects, J. Chem. Phys. 69: 1200.

    Google Scholar 

  • Ackerhalt, J., and Galbraith, H. (1979), Collisionless Multiple Photon Excitation in SF6: Thermal or Not?, in: Laser Spectroscopy IV, Proc. 4th International Conference, Rottach-Egern, Springer Series in Optical Sciences, Walther, H., and Rothe, K., eds., Springer-Verlag, New York.

    Google Scholar 

  • Akhmanov, S., Gordienkv, V., Mikhunko, A., and Panchenko, V. (1978), Dependence of the Rate of Vibrational-Translational Relaxation in SF6 on the Intensity of Selective Laser Excitation, JETP Lett. 26, 453.

    Google Scholar 

  • Aldridge III, J. P., Birely, J. H., Cantrell III, C. D., and Cartwright, D. C. (1976), Experimental and Theoretical Studies of Laser Isotope Separation, in: Laser Photochemistry, Tunable Lasers, and Other Topics, Jacobs, S. F., Sargent III, M., Scully, M. O., and Walker, C. T., eds., Addison-Wesley, Reading, pp. 57–144.

    Google Scholar 

  • Allen, S. D. (1980), Laser Chemical Vapor Deposition—Applications in Materials Processing, in: Laser Applications in Materials Processing, Society of Photo-Optical Instrumentation Engineers (SPIE), Vol. 198, August 27–28, 1979, San Diego, CA, Ready, J. F., ed., Soc. Photo-Optical Instrumentation Engineers, Washington, pp. 49–56.

    Google Scholar 

  • Allen, S. D., Trigubo, A. B., and Jan, R. Y. (1983), Direct Writing Using Laser Chemical Vapor Deposition, In: Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Materials Research Soc. Symp. Proc., Vol. 17, Osgood, R. M., Brueck, S. R. J., and Schlossberg, H. R., eds., Elsevier, New York, pp. 207–214.

    Google Scholar 

  • Allmen, M. V. (1987), Laser-Beam Interactions with Materials: Physical Principles and Applications, Springer-Verlag, New York, p. 34.

    Google Scholar 

  • Appleton, B. R., and Allen, G. K., eds. (1982), Laser and Electron Beam Processing, Elsevier, New York.

    Google Scholar 

  • Arnone, C., Rothschild, M., Black, J. G., and Ehrlich, D. J. (1986), Appl. Phys. Lett. 48, 1018.

    Google Scholar 

  • Baldwin, A. C., Barker, J. R., Golden, D. M., Duperrex, R., and Van den Bergh, H. (1979), Infrared Multiphoton Chemistry: Comparison of Theory and Experiment, Solution of the Master Equation, Chem. Phys. Lett. 62, 178.

    Google Scholar 

  • Bäuerle, D. (1983a), Production of Microstructures by Laser Pyrolysis, in: Laser Diagnostics and Photo-Chemical Processing for Semiconductor Devices, Materials Research Soc. Symp. Proc., Vol. 17, Osgood, R. M., Brueck, S. R. J. and Schlossberg, H. R., eds., Elsevier, New York, pp. 19–28.

    Google Scholar 

  • Bäuerle, D. (1983b), Laser Induced Chemical Vapor Deposition, in: Surface Studies with Lasers, Proc. Int. Conf., Mauterndorf, Austria, March 9–11, Aussenegg, F. R., Leitner, A., and Lippitsch, M. E., eds., Springer-Verlag, New York, pp. 178–188.

    Google Scholar 

  • Bäuerle, D. (1986), Chemical Processing with Lasers, Springer-Verlag, New York, pp. 42 and 93.

    Google Scholar 

  • Bazhin, H. M., Skubnevskaya, G. I., Sorokin, N. I., and Molin, Y. N. (1974), JETP Lett., 20, 18.

    Google Scholar 

  • Biyikli, S., and Modest, M. F. (1988), Beam Expansion and Focusing Effects on Evaporative Laser Cutting, ASME J. Heat Transfer 110, 529.

    Google Scholar 

  • Black, J., Kolodner, P., Shultz, M., Yablonovitch, E., and Bloembergen, N. (1979), Collisionless Multiphoton Energy Deposition and Dissociation of SF6, Phys. Rev. A 19, 704.

    Google Scholar 

  • Black, J., Yablonovitch, E., Bloembergen, N., and Mukamel, M. (1977), Collisionless Multiphoton Dissociation of SF6: A Statistical Thermodynamics Process, Phys. Rev. Lett. 38, 1131.

    Google Scholar 

  • Boyd, I. W. (1989), Doping and Oxidation, Chapter 10, in: Laser Microfabrication: Thin Film Processes and Lithography, Ehrlich, D. J., and Tsao, J. Y., eds., Academic, New York, pp. 559–580.

    Google Scholar 

  • Boyd, I. W. (1987), Laser Processing of Thin Films and Microstructures, Springer-Verlag, New York.

    Google Scholar 

  • Breinan, E. M, Kear, B. H., and Banas, C. M. (1976), Processing Materials with Lasers, Physics Today 29, 44–50.

    Google Scholar 

  • Brenner, D. M. (1978), Infrared Multiphoton-Induced Chemistry of Ethyl Vinyl Ether: Dependence of Branching Ratio on Laser Pulse Duration, Chem. Phys. Lett. 57, 357.

    Google Scholar 

  • Cacouris, T., Scelsi, G., Scarmozzino, R., Osgood, Jr., R. M., and Krchnavek, R. R. (1988), Laser Direct Writing of Aluminum, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Research Soc. Proc., Vol. 101, December 1–3,1987, Boston, MA, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M. eds., Materials Research Society, Pittsburgh, pp. 43–48.

    Google Scholar 

  • Calveert, J. G., and Pitts, J. N., Jr. (1966), Photochemistry, Wiley, New York, p. 19.

    Google Scholar 

  • Coble, R. L. (1963), A Model for Boundary Diffusion-Controlled Creep in Polycrystalline Materials, J. Appl. Phys. 34, 1679.

    Google Scholar 

  • Crawford, B. L., and Cross, P. C. (1938), J. Chem. Phys. 6, 535.

    Google Scholar 

  • Cullity, B. D. (1956), Elements of X-Ray Diffraction, Addison-Wesley, Reading, 261 pp.

    Google Scholar 

  • Danen, W. C. (1980), Pulsed Infrared Laser Induced Organic Chemical Reactions, Opt. Eng. 19, 21.

    Google Scholar 

  • Danen, W. C., Munslow, W. D., and Setser, D. W. (1977), Infrared Laser Induced Organic Reactions: (1) Irradiation of Ethyl Acetate With a Pulsed CO2 Laser. Selective Inducement vs. Thermal Reaction, J. Am. Chem. Soc. 99, 6961.

    Google Scholar 

  • Das, P. (1991), Lasers and Optical Engineering, Springer-Verlag, New York, pp. 237–240.

    Google Scholar 

  • Dieter, G. E. (1986), Mechanical Metallurgy, 3rd Ed., McGraw-Hill, New York, 189 pp.

    Google Scholar 

  • Dunn, O., Harteck, P., and Dondes, S. (1973), J. Phys. Chem. 77, 878.

    Google Scholar 

  • Duperrex, R., and Van den Bergh, H. (1979a), Temperature Dependence in the Multiphoton Dissociation of 32SF6, J. Chem. Phys. 70, 5672.

    Google Scholar 

  • Duperrex, R., and Van den Bergh, H. (1979b), Competition Between Collisions and Optical Pumping in Unimolecular Reactions Induced by Monochromatic Infrared Radiation, J. Chem. Phys. 40, 275.

    Google Scholar 

  • Easterling, K. E., nd Thölen, A. R. (1972), Acta Met. 20, 1001.

    Google Scholar 

  • Eden, J. G. (1992), Photochemical Vapor Deposition, Wiley, New York.

    Google Scholar 

  • Ehrlich, D. J., Osgood, R. M., and Deutsch, T. F. (1980), Appl. Phys. Lett. 36, 916.

    Google Scholar 

  • Ehrlich, D. J., Osgood, R. M., and Deutsch, T. F. (1982), J. Vac. Sci. Technol. 21, 23.

    Google Scholar 

  • Emanuel, G. (1979), A Simple Model for Multiphoton Molecular Absorption, J. Quant. Spectros. and Radiat. Transfer 21, 147.

    Google Scholar 

  • Eres, D., Lowndes, D. H., Geohegan, D. B., and Mashburn, D. N. (1988), Laser Photochemical Growth of Amorphous Silicon at Low Temperatures and Comparison with Thermal Chemical Vapor Deposition, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Research Soc. Proc., Vol. 101, Symposium held December 1–3, 1987, Boston, MA, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, pp. 355–360.

    Google Scholar 

  • Farrar, Jr., R. L., and Smith, D. F. (1972), ORGDP Report KL 3054, Rev. 1, March.

    Google Scholar 

  • Froidevaux, Y. R., Salathe, R. P., Gilgen, H. H., and Weber, H. P. (1982), Cadmium Deposition on Transparent Substrates by Laser-Induced Dissociation of Cd(CH3)2 at Visible Wavelengths, Appl. Phys. A.27, pp. 133.

    Google Scholar 

  • Garcia, D., and Keehn, P. M. (1978), Organic Chemistry by Infrared Lasers: (2) Retro-Diels-Alder Reactions, J. Am. Chem. Soc. 100, 6111.

    Google Scholar 

  • Gerard, M. (ed), (1966), ONRL-TR-1045, Isotopes and Radiation Technology, Vol. 3, p. 200.

    Google Scholar 

  • Gilgen, H. H., Chen, C. J., Krchnavek, R., and Osgood, R. M. (1984), Laser Processing and Diagnostics, Bäerle, D., ed., Springer-Verlag, New York.

    Google Scholar 

  • Gower, M., and Billman, K. (1977), Collisionless Dissociation and Isotopic Enrichment of SF6 Using High Powered CO2 Laser Radiation, Opt. Comm. 20, 123.

    Google Scholar 

  • Gross, R. W. F. (1974), Laser Isotope Separation, Opt. Eng. 13, 506.

    Google Scholar 

  • Gunning, H. E. (1963), J. Chem. Phys. 60, 197.

    Google Scholar 

  • Ibbs, K. G., and Osgood, R. M. (1989), Applications of Laser Chemical Techniques to Microelectronics Fabrication, in: Laser Chemical Processing for Microelectronics, Ibbs, K. G., and Osgood, R. M., eds., Cambridge University Press, New York, pp. 5–7.

    Google Scholar 

  • Irvine, S. J. C. (1989), Epitaxy, Chapter 9, in: Laser Microfabrication: Thin Film Processes and Lithography, Ehrlich, D. J., and Tsao J. Y., eds., Academic, New York, pp. 503–538.

    Google Scholar 

  • Isenor, N., Merchant, V., Hallsworth, R., and Richardson, M. (1973), CO2 Laser-Induced Dissociation of SiF4 Molecules into Electronically Excited Fragments, Canad. J. Phys. 51, 1281.

    Google Scholar 

  • Itoh, T., and Yanai, H. (1980), IEEE Trans. Electron. Devices, ED-27(6), 1037.

    Google Scholar 

  • Kaldor, A., Hall, R. B., Cox, D. M., Horsley, J. A., Rabinowitz, P., and Kramer, G. M. (1979), Infrared Laser Chemistry of Large Molecules, J. Am. Chem. Soc. 101, 4465.

    Google Scholar 

  • Karam, N. H., Liu, H., Yoshida, I., Katsuyama, T., and Bedair, S. M. (1988), Laser-Enhanced Selective Epitaxy of III-V Compounds, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Research Soc. Proc., Vol. 101, Symposium held December 1–3, 1987, Boston, MA, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Reseach Society, Pittsburgh, pp. 285–290.

    Google Scholar 

  • Kirillov, D., and Merz, J. L, (1983), Raman Scattering as a Temperature Probe for Laser Heating of Si, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Materials Research Soc. Symp. Proc., Vol. 17, Osgood, R. M., Brueck, S. R. J., and Schlossberg, H. R., eds., Elsevier, New York, pp. 95–102.

    Google Scholar 

  • Kisker, D. W., and Feldman, R. D. (1985), Photon-Assisted OMVPE Growth of CdTe, J. Cryst. Growth 72, 102.

    Google Scholar 

  • Koebner, H., (ed.), (1984), Industrial Applications of Lasers, Wiley, New York.

    Google Scholar 

  • Kogelnik, H. (1965), Imaging of Optical Modes—Resonators with Internal Lenses, Bell. Sys. Tech. J. 44, 455.

    Google Scholar 

  • Kuhn, W., and Martin, H. (1932), Naturwissen. 20, 772.

    Google Scholar 

  • Kuhn, W., Martin, M., and Eldau, K. H. (1941), Z. Phys. Chem. Abt. 50B, 213.

    Google Scholar 

  • Lamarsh, J. R. (1983), Introduction to Nuclear Engineering, Addison-Wesley, Reading, MA, pp. 168–175.

    Google Scholar 

  • Laser Institute of America (1977), Guide for Material Processing by Lasers, Paul M. Harrod, Baltimore, p. 4–6.

    Google Scholar 

  • Li, Y. (1993), Accurate Approximation of the Focal Shift in the Transformation of Truncated Gaussian Beams, Opt. Eng. 32, 774.

    Google Scholar 

  • Liuti, G., Dondes, S., and Harteck, P. (1966), J. Chem. Phys. 44, 4052.

    Google Scholar 

  • Lydtin, H., and Wilden, R. (1973), Deposition of Metal: Laser-Aided Technique, Metals and Materials 7, 159.

    Google Scholar 

  • Lyman, J. L., Quigley, G. P., and Judd, O. P. (1986), Single-Infrared-Frequency Studies of Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, in: Multiple-Photon Excitation and Dissociation of Polyatomic Molecules, Cantrell, C. D., ed., Vol. 35 of Topics in Current Physics, Springer-Verlag, New York, pp. 9–94.

    Google Scholar 

  • Lyons, A. M., Wilkins, Jr., C. W., and Mendenhall, F. T. (1988), Direct Writing of Carbon Interconnections, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Research Soc. Proc., Vol. 101, Symposium held December 1–3,1987, Boston, MA, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, pp. 67–73.

    Google Scholar 

  • Mason, S. C. (1977), J. Colloid, and Interf. Sci. 58, 275.

    Google Scholar 

  • Mazumder, J. (1991), Overview of Melt Dynamics in Laser Processing, Opt. Eng. 30, 1208.

    Google Scholar 

  • Mazumder, J., and Allen, S. D. (1980), Laser Chemical Vapor Deposition of Titanium Carbide, in: Laser Applications in Materials Processing, San Diego, CA, Proc. Society of Photo-Optical Instrumentation Engineers (SPIE), Vol. 198, August 27–28, 1979, San Diego, CA, Ready, J F., ed., Soc. Photo-Optical Instrumentation Engineers, Washington, pp. 73–80.

    Google Scholar 

  • Meyer-Arendt, J. R. (1984), Introduction to Classical and Modern Optics, Second Edition, Prentice-Hall, Englewood Cliffs, pp. 516–517.

    Google Scholar 

  • Moore, C. A., Yu, Z. Q., Thompson, L. R., and Collins, G. J. (1988), Laser and Electron Beam Assisted Processing, Handbook of Thin-Film Deposition Processes and Techniques: Principles, Methods, and Equipment and Applications, Schuegraf, K. K., ed., Noyes Publications, Park Ridge, N.J., pp. 318–343.

    Google Scholar 

  • Murphy, D. V., and Brueck, S. R. J. (1983), Optical Microanalysis of Small Semiconductor Structures, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Materials Research Soc. Symp. Proc., Vol. 17, Osgood, R. M., Brueck, S. R. J., and Schlossberg, H R., eds., Elsevier, pp. 81-94.

    Google Scholar 

  • Nakamatsu, H., Hirata, K., and Kawai, S. (1988), Synthesis of Epitaxial Silicon Carbide Films by Laser CVD, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Research Soc. Proc., Vol. 101, December 1–3, 1987, Boston, MA, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, pp. 397–402.

    Google Scholar 

  • Natzle, W. C. (1988), Distinguishing Laser-Induced Thermal and Photochemical Surface Reactions by Photodeposit Morphology, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Research Soc. Proc., Vol. 101, December 1–3, 1987, Boston, MA, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, pp. 213–216.

    Google Scholar 

  • Nishizawa, J. I. and Kurabayashi, T. (1988), Photo-Assisted Molecular Layer Epitaxy, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Research Soc. Proc., Vol. 101, December 1–3, 1987, Boston, MA, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, pp. 275–284.

    Google Scholar 

  • Nowak, A. V., and Lyman, J. L. (1975), The Temperature-Dependent Absorption Spectrum of the v 3 Band of SF6 at 10.6μm, J. Quant. Spectros. Radiat. Transfer 15, 945.

    Google Scholar 

  • Padmanabhan, R., Miller, B. J., and Tarn, G. (1988), Photo-CVD Silicon Nitride for GaAs MESFET Passivation, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Research Society Proc., Vol. 101, December 1–3, 1987, Boston, MA, Ehrlich, D. J., Hagashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, pp. 379–384.

    Google Scholar 

  • Patty, R. R., Russwarm, G. M., and Morgan, D. R. (1974), Appl. Opt. 13, 2850.

    Google Scholar 

  • Petzold, H. C., Putzar, R., Weigmann, U., and Wilke, I. (1988), Laser-Induced Metal Deposition on Silicon Membranes for X-Ray Lithography, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Reseach Soc. Proc., Vol. 101, December 1–3, 1987, Boston, MA, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, pp. 75–80.

    Google Scholar 

  • Poon, E., Evans, H. L., Wang, W. H., and Osgood, Jr., R. M., and Yang, E. S. (1983), Measurement of Grain Boundary Parameters by Laser-Spot Photoconductivity, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Materials Research Soc. Symp. Proc., Vol. 17, Osgood, R. M., Brueck, S. R. J., and Schlossberg, H. R., eds., Elsevier, New York, pp. 103–108.

    Google Scholar 

  • Powell, C. F. (1966), Chemically Deposited Nonmetals in Vapor Deposition, Powell, C. F., Oxley, J. H., and Blocher, J. M., eds., Wiley, New York, 343 pp.

    Google Scholar 

  • Powell, C. F., Campbell, I. E., and Gonser, B. W. (1955), Vapor Plating, Wiley, New York.

    Google Scholar 

  • Quack, M. (1978), Theory of Unimolecular Reactions Induced by the Monochromatic Infrared Radiation, J. Chem. Phys. 69, 1282.

    Google Scholar 

  • Quigley, G. (1978), Collisional Effects in Multiple Photon IR Absorption in: Advances in Laser Chemistry, Springer Series in Chemical Physics, Zewail, A. Z., ed., Springer-Verlag, New York.

    Google Scholar 

  • Ready, J. F. (1971), Effects of High-Power Laser Radiation, Academic, New York, pp. 19–20.

    Google Scholar 

  • Ready, J. F. (1978), Industrial Applications of Lasers, Academic, New York, p. 356.

    Google Scholar 

  • Robinson, P. J., and Holbrook, K. A. (1972), Unimolecular Reactions, Wiley, New York.

    Google Scholar 

  • Roessler, D. M. (1986), An Introduction to the Laser Processing of Materials, The Industrial Laser Annual Handbook, Belforte, D., and Levitt, M., eds., SPIE Vol. 629, PennWell Books, Tulsa, pp. 16–30.

    Google Scholar 

  • Roth, W., Kräutle, H., Krings, H., and Beneking, H., 1983, Laser-Stimulated Growth of Epitaxial GaAs, Mat. Res. Soc. Symp. Proc. 17, 193–198.

    Google Scholar 

  • Salathe, R. P., and Gilgen, H. H. (1983), High Resolution Laser Diagnostics for Direct Gap Semiconductor Materials, in: Laser Diagnostics and Photochemical Processing for Semiconductor Devices, Materials Research Soc. Symp. Proc, Vol. 17, Osgood, R. M., Brueck, S. R. J., and Schlossberg, H. R., eds., Elsevier, New York, pp. 109–116.

    Google Scholar 

  • Shaub, W. M., and Bauer, S. H. (1975), Laser-Powered Homogeneous Pyrolysis, Int. J. Chem. Kinet. 7, 509.

    Google Scholar 

  • Stafast, H., Schmid, W. E., and Kompa, K. L. (1977), Absorption of CO2 Laser Pulses at Different Wavelengths by Ground-State and Vibrationally Heated SF6, Opt. Comm. 21, 121.

    Google Scholar 

  • Steen, W. M. (1977), The Thermal History of a Spot Heated by a Laser, Lett. Heat and Mass Transfer 4, 167.

    Google Scholar 

  • Steen, W. M. (1978), Surface Coating with a Laser, Int. Conf. Advances in Surface Coating Technology, Vol. 1, The Welding Institute, February 13–15, Cambridge, London, pp. 175–187.

    Google Scholar 

  • Steen, W. M. (1991), Laser Material Processing, Springer-Verlag, London, pp. 52–61.

    Google Scholar 

  • Steinfeld, J. I. (ed.), (1981), Laser-Induced Chemical Processes, Plenum, New York.

    Google Scholar 

  • Steinfeld, J. I., Anderson, T. G., Reisner, C., Denison, D. R., Hartsough, L. D., and Hollahan, J. R. (1980), J. Electrochem. Soc. 127, 514.

    Google Scholar 

  • Stephensen, J. G, King, D. S., Goodman, M. F., and Stone, J. (1979), Experiment and Theory for CO2 Laser-Induced CF2 HC1 Decomposition Rate Dependence on Pressure and Intensity, J. Chem. Phys. 70, 4496.

    Google Scholar 

  • Tachibana, H., Nakaue, A., and Kawate, Y. (1988), Deposition of Amorphous Carbon Films by Laser-Induced CVD, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Research Soc. Proc. Vol. 101, December 1–3, 1987, Boston, MA, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, Pennsylvania, pp. 367–370.

    Google Scholar 

  • Thiele, E., Goodman, M., and Stone, J. (1980), Can Lasers Be Used to Break Chemical Bonds Selectively? (Laser Application to Chemistry Issue) Opt. Eng., 19, 10.

    Google Scholar 

  • Truhlar, D. G. (ed.), (1981), Potential Energy Surfaces and Dynamics Calculations, Plenum, New York.

    Google Scholar 

  • Tsang, W., Walker, J. A., Braun, W., and Herron, J. T. (1978), Mechanisms of Decomposition of Mixtures of Ethyl Acetate and Isopropyl Bromide Subjected to Pulsed Infrared Laser Irradiation, Chem. Phys. Lett. 59, 487.

    Google Scholar 

  • Tsay, W., Riley, G, and Ham, D., 1979, Thermal Enhancement of Multiple Photon Absorption by SF6, J. Chem. Phys. 70, 3558.

    Google Scholar 

  • Uesugi, F., Morishige, Y., Shinzawa, T., Kishida, S., Hirata, M., Yamada, H., and Matsumoto, K. (1988), “Low Resistivity Contact Formation for LSI Interconnection with Short-Pulse-Laser Induced MOCVD, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Research Soc. Proc., Vol. 101, December 1–3, 1987, Boston, MA, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, pp. 61–65.

    Google Scholar 

  • Walker, R. B., and Preston, R. K. (1977), Quantum versus Classical Dynamics in the Treatment of Multiple Photon Excitation of the Anharmonic Oscillator, J. Chem. Phys. 67, 2017.

    MathSciNet  Google Scholar 

  • Winburn, D. C. (1990), Practical Laser Safety, 2nd Ed., Marcel Dekker, New York.

    Google Scholar 

  • Woodin, R. L., Bomse, D. S., and Beauchamp, J. L. (1978), Multiphoton Dissociation of Molecules with Low Power Continuous Wave Infrared Laser Radiation, J. Am. Chem. Soc. 100, 3248.

    Google Scholar 

  • Yokoyama, H., Kishida, S., and Washio, K. (1984), Appl. Phys. Lett. 44, 755.

    Google Scholar 

  • Zinck, J. J., Brewer, P. D., Jensen, J. E., Olson, G. L., and Tutt, L. W. (1988), Excimer Laser-assisted MOVPE of CdTe on GaAs (100): Crystal Growth and Mechanisms, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Research Soc. Proc., Vol. 101, December 1–3, 1987, Boston, MA, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, pp. 319–326.

    Google Scholar 

  • Zuber, K., 1935, Nature 136, 796.

    Google Scholar 

  • Zuhoski, S. P., Killeen, K. P., and Biefeld, R. M. (1988), Photolytic Deposition of InSb Film, in: Laser and Particle-Beam Chemical Processing for Microelectronics, Materials Research Soc. Proc., Vol. 101, December 1–3, 1987, Boston, MA, Ehrlich, D. J., Higashi, G. S., and Oprysko, M. M., eds., Materials Research Society, Pittsburgh, pp. 313–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mazumder, J., Kar, A. (1995). Introduction. In: Theory and Application of Laser Chemical Vapor Deposition. Lasers, Photonics, and Electro-Optics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1430-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1430-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1432-3

  • Online ISBN: 978-1-4899-1430-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics