Skip to main content

Mathematical Foundations of Evidence Theory

A Theory of Reasoning with Uncertain Arguments

  • Chapter
Mathematical Models for Handling Partial Knowledge in Artificial Intelligence

Abstract

Reasoning schemes in artificial intelligence (and elsewhere) use information and knowledge, but the inference my depend on assumptions which are uncertain. In this case arguments in favour of and against hypotheses can be derived. These arguments may be weighed by their likelihoods and thereby the credibility and plausibility of different possible hypotheses can be obtained. This is, in a nutshell, the idea to be explored and developed in this article.

Research supported by grant 21-32660.91 of the Swiss National Foundation for Research and the Swiss Federal Office for Science and Education, Esprit Basic Research Project Drums II (Defeasible Reasoning and Uncertainty Management Systems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BESNARD, P.; KOHLAS, J. (1994): Evidence Theory Based on General Consequence Relations. Institute of Informatics, University of Fribourg, Switzerland, Internal Paper No. 94–08. To be published in Int. J. of Foundations of Computer Science.

    Google Scholar 

  • BIRKHOFF, G. (1948): Lattice Theory. Amer. Math. Soc., New York.

    Google Scholar 

  • DE KLEER, J. (1986): An Assumption-Based TMS. Art. Int. 28, 127–162.

    Article  Google Scholar 

  • DEMPSTER, A. (1967): Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat., 38, 325–339.

    Article  MathSciNet  MATH  Google Scholar 

  • HALMOS, P. (1963): Lectures on Boolean Algebras. Van Nostrand-Reinhold, London.

    MATH  Google Scholar 

  • HESTIR, K.; NGUYEN, H.T.; ROGERS, G.S. (1991): A Random Set Formalism for Evidential Reasoning. In GOODMAN, I.R. et al. (eds.): Conditional Logic in Expert Systems, 309–344.

    Google Scholar 

  • KOHLAS, J. (1991): The Reliability of Reasoning with Unreliable Arguments. Ann. of Op. Res. 32, 76–113.

    MathSciNet  Google Scholar 

  • KOHLAS, J. (1993 a): Symbolic Evidence, Arguments, Supports and Valuation Networks. In: CLARKE, M.; KRUSE, R.; MORAL, S.: Symbolic and Quantitative Approaches to Reasoning and Uncertainty. Springer, 186–198.

    Google Scholar 

  • KOHLAS, J. (1993 b): Support-and Plausibility Functions Induced by Filter-Valued Mappings. Int J. Gen Sys. 21, 343–363.

    Google Scholar 

  • KOHLAS, J.; MONNEY, P.A. (1993): Probabilistic Assumption-Based Reasoning. In: HECKERMAN, D.; MAMDANI, A.: Uncertainty in Art. Int. Proc. of the Ninth Conf., 485–490.

    Google Scholar 

  • NEVEU, J. (1964): Bases Mathématiques du Calcul des Probabilités. Masson, Paris.

    MATH  Google Scholar 

  • NGUYEN, H.T. (1978): On Random Sets and Belief Functions. J. Math. Anal. and Appl. 65, 531–542.

    MATH  Google Scholar 

  • LASKEY, K.B.; LEHNER, P.E. (1989): Assumptions, Beliefs and Probabilities. Art. Int. 41, 65–77.

    Article  MathSciNet  Google Scholar 

  • PEARL, J. (1988): Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufman, San Mateo, Cal.

    Google Scholar 

  • PROVAN, G.M. (1990): A Logic-Based Analysis of Dempster-Shafer Theory. Int. J. Approx. Reas. 4, 451–495.

    Article  MathSciNet  MATH  Google Scholar 

  • REITER. R., DE KLEER, J. (1987): Foundations of Assumption-Based Truth Maintenance Systems. Proc. Amer. Assoc. A.I., 183–188.

    Google Scholar 

  • SHAFER, G. (1976): A Mathematical Theory of Evidence. Princeton University Press, 1976.

    Google Scholar 

  • SHAFER, G. (1979): Allocations of Probability. Ann. of Prob. 7, 827–839.

    Article  MathSciNet  MATH  Google Scholar 

  • WOJCICKI, R. (1988): Theory of Logical Calculi. Basic Theory of Consequence Operations. Kluwer Academic Press, Dordrecht.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kohlas, J. (1995). Mathematical Foundations of Evidence Theory. In: Coletti, G., Dubois, D., Scozzafava, R. (eds) Mathematical Models for Handling Partial Knowledge in Artificial Intelligence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1424-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1424-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1426-2

  • Online ISBN: 978-1-4899-1424-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics