Skip to main content
  • 396 Accesses

Extended Abstract

Assumption based reasoning combined with an assignment of probabilities to the assumptions is demonstrated as an implementation of the theory of hints, (Kohlas, Monney, 1993) an extension of Shafer’s mathematical theory of evidence. It is one possibility among others to deal with uncertain knowledge in AI systems. The symbolic representation of uncertain knowledge allows to apply classical inference techniques.

Research supported by grants of ESPRIT Basic Research Activity Project DRUMSII (Defeasible Reasoning and Uncertainty Management).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • de Kleer, J. 1986. Problem Solving with the ATMS. Artificial Intelligence, Elsevier Science Publisher B. V. (Amsterdam), 28, 197–224.

    Google Scholar 

  • Genesereth, M.R., & Nilsson, N.J. 1987. Logical Foundations of Artificial Intelligence. Morgan Kaufmann Publishers.

    Google Scholar 

  • Gödel, K. 1930. Die Vollständigkeit der Axiome des Logischen Funktionenkalküls. Monatshefte für Mathematik und Physik, 37, 349–360.

    Article  MATH  Google Scholar 

  • Hänni, U. 1993. Fast Generation of Supports with an Incremental Resolution based Inference Algorithm. Tech. Rep. Inst. for Informatics, University of Fribourg.

    Google Scholar 

  • Inoue, K. 1992. Linear resolution for consequence finding. Artificial Intelligence, Elsevier Science Publisher B. V. (Amsterdam), 56, 301–353.

    MATH  Google Scholar 

  • Kohlas, J., & Monney, P.A. 1993. Probabilistic Assumption-Based Reasoning. In: Heckermann, & Mamdani (eds), Proc. 9th Conf. on Uncertainty in Artificial Intelligence. Kaufmann, Morgan Publ.

    Google Scholar 

  • Lauritzen, S.L., & Spiegelhalter, D.J. 1988. Local Computations with Probabilities on Graphical Structures and their Application to Expert Systems. J. R. Statist. Soc. B, 50 (2), 157–224.

    MathSciNet  MATH  Google Scholar 

  • Reiter, R., & de Kleer, J. 1987. Foundations of Assumption-based Truth Maintenance Systems. Proc. Amer. Assoc. A.I., 183–188.

    Google Scholar 

  • Siegel, P. 1987. Représentation et Utilisation de la Connaissance en Calcul Propositionel. Ph.D. thesis, Université d’Aix-Marseille I I. Luminy, France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hänni, U. (1995). Computing Symbolic Support Functions by Classical Theorem-Proving Techniques. In: Coletti, G., Dubois, D., Scozzafava, R. (eds) Mathematical Models for Handling Partial Knowledge in Artificial Intelligence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1424-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1424-8_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1426-2

  • Online ISBN: 978-1-4899-1424-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics