Skip to main content

Advances in Finite-Difference Time-Domain Methods for Engineering Electromagnetics

  • Chapter

Abstract

This paper summarizes my group’s latest work in applying finite-difference time-domain (FD-TD) techniques for Maxwell’s equations to model complex electromagnetic wave interactions. Our perspective, based upon two decades of continuous work in this field, is that FD-TD provides an electromagnetic modeling framework that is so robust that merely activating a set of auxiliary time-dependent differential equations (contained within subroutines) for physical quantities associated with the electromagnetic field permits the article being modeled to be switched from a jet fighter to a digital electronic circuit to a photonic device. The augmentation of FD-TD in this manner gives it enormous capability in modeling nonlinear electronic and photonic phenomena that are central to ultrahigh-speed device behavior. We will focus on four primary technical developments

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. G. Jurgens and A. Taflove, Three-dimensional contour FD-TD modeling of scattering from single and multiple bodies, IEEE Trans. Antennas Propagat. 41:1703 (1993).

    Article  ADS  Google Scholar 

  2. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comp. Phys., in press.

    Google Scholar 

  3. D. S. Katz, E. T. Thiele, and A. Taflove, Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes, IEEE Microwave Guided Wave Let., submitted.

    Google Scholar 

  4. V. A. Thomas, M. E. Jones, M. J. Piket-May, A. Taflove, and E. Harrigan, The use of SPICE lumped circuits as sub-grid models for FD-TD high-speed electronic circuit design, IEEE Microwave Guided Wave Let. 4, in press (1994).

    Google Scholar 

  5. R. M. Joseph, A. Taflove, and P. M. Goorgian, Auxiliary differential equation method for FD-TD modeling of multiple Lorentzian relaxations, IEEE Microwave Guided Wave Let., submitted.

    Google Scholar 

  6. R. M. Joseph and A. Taflove, Spatial soliton deflection mechanism indicated by FD-TD Maxwell’s equations modeling, IEEE Photonics Tech. Let., submitted.

    Google Scholar 

  7. G. Mur, Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations, IEEE Trans. Electromagn. Compat. 23:377 (1981).

    Article  Google Scholar 

  8. K. K. Mei and J. Fang, Superabsorption-a method to improve absorbing boundary conditions, IEEE Trans. Antennas Propagat. 40:1001(1992).

    Article  ADS  Google Scholar 

  9. Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, A transmitting boundary for transient wave analysis, Scientia Sinica (series A) 1063 (1984).

    Google Scholar 

  10. R. Holland and J. W. Williams, IEEE Trans. Nucl. Sci. 30:4583 (1983).

    Article  ADS  Google Scholar 

  11. T. G. Moore, J. G. Blaschak, A. Taflove, and G. A. Kriegsmann, Theory and application of radiation boundary operators, IEEE Trans. Antennas Propagat. 36:1797 (1988).

    Article  ADS  Google Scholar 

  12. R. M. Joseph, S. C. Hagness, and A. Taflove, Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses, Optics Let 16:1412 (1991).

    Article  ADS  Google Scholar 

  13. R. J. Luebbers and F. Hunsberger, FDTD for Nth-order dispersive media, IEEE Trans. Antennas Propagat. 40:1297 (1992).

    Article  ADS  Google Scholar 

  14. T.-T. Shi and S. Chi, Nonlinear photonic switching by using the spatial soliton collision, Optics Let. 15:1123 (1990).

    Article  ADS  Google Scholar 

  15. J.S. Aitchison, A.M. Weiner, Y. Silberberg, D.E. Leaird, M. K. Oliver, J.L. Jackel and P.W.E. Smith, Experimental observation of spatial soliton interactions, Optics Let 16:15 (1991).

    Article  ADS  Google Scholar 

  16. C. Desem and P. L. Chu, Reducing soliton interaction in single-mode optical fibres, IEE Proc. 134:145 (1987).

    Google Scholar 

  17. R. S. Tasgal and M. J. Potasek, Soliton solutions to coupled higher-order nonlinear Schrödinger equations, J. Math. Phys., submitted.

    Google Scholar 

  18. M. Lax, W. H. Louisell, and W. B. McKnight, From Maxwell to paraxial wave optics, Phys. Rev. A. 11:1365 (1975).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taflove, A. (1995). Advances in Finite-Difference Time-Domain Methods for Engineering Electromagnetics. In: Carin, L., Felsen, L.B. (eds) Ultra-Wideband, Short-Pulse Electromagnetics 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1394-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1394-4_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1396-8

  • Online ISBN: 978-1-4899-1394-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics