Advertisement

Purification and Characterization of a β-Glucosidase which Converts Furostanol Glycosides to Spirostanol Glycosides from Costus speciosus

  • Kentaro Inoue
  • Yutaka Ebizuka
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 404)

Abstract

In plants, spirostanol glycosides are known to be formed from furostanol glycosides during post-harvest treatment and storage.1 Although the biological activities of these glycosides have been well described,2,3 little is known about their physiological roles in intact plants.

Keywords

Trifolium Repens Sweet Almond Furostanol Glycoside Anion Exchange HPLC Spirostanol Glycoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Kawasaki, T. Komori, K. Miyahara, T. Nohara, I. Hosokawa, and K. Mihashi, Furostanol bisglycosides corresponding to dioscin and gracillin, Chem. Pharm. Bull. 22: 2164 (1974).CrossRefGoogle Scholar
  2. 2.
    S. B. Mahato, A. N. Ganguly and N. P. Sahu, Steroid saponins, Phytochemistry 21: 959 (1982).CrossRefGoogle Scholar
  3. 3.
    Y. Mimaki, T. Nikaido, K. Matsumoto, Y. Sashida, and T. Ohmoto, New steroidal saponins from the bulbs of Allium giganteum exhibiting potent inhibition of cAMP phosphodiesterase activity, Chem. Pharm. Bull. 42: 710 (1994).PubMedCrossRefGoogle Scholar
  4. 4.
    B. Dasgupta and V. B. Pandey, A new Indian source of diosgenin (Costus speciosus), Experientia, 26: 475 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    S. B. Singh, M. M. Gupta, R. N. Lal, and R. S. Thakur, Costus speciosus seeds as an additional source of diosgenin, Planta Med. 38: 185 (1980).CrossRefGoogle Scholar
  6. 6.
    R. Tschesche and V. B. Pandey, Steroidal saponins of Costus speciosus, Phytochemistry 17: 1781 (1978).CrossRefGoogle Scholar
  7. 7.
    M. M. Gupta, Y. N. Shukla, and R. N. Lal, Investigation of Costus IV: chemical studies of saponins of Costus speciosus roots, Planta Med. 44: 48 (1983).Google Scholar
  8. 8.
    S. B. Singh and R. S. Thakur, Saponins from the seeds of Costus speciosus, J. Nat. Prod. 45: 667 (1982).CrossRefGoogle Scholar
  9. 9.
    S. B. Singh and R. S. Thakur, Costusoside-I and costusoside-J, two new furostanol saponins from the seeds of Costus speciosus, Phytochemistry 21: 911 (1982).CrossRefGoogle Scholar
  10. 10.
    K. Inoue, S. Kobayashi, H. Noguchi, U. Sankawa, and Y. Ebizuka, Spirostanol and furostanol glycosides of Costus speciosus (Koenig) Sm., Nat. Med. 49: 336 (1995).Google Scholar
  11. 11.
    R. A. Joly, J. Bonner, D. Bennett, and E. Heftmann, Conversion of an open-chain saponin to dioscin by a Dioscorea floribunda homogenate, Phytochemistry 8: 1445 (1969).CrossRefGoogle Scholar
  12. 12.
    K. G. Gurielidze, V. A. Paseshnichenko, and I. S. Vasil’eva, Detection of an oligofurostanoside-specific f3-glucosidase in leaves of Dioscorea deltoidea, Dokl. Akad. Nauk SSSR 286: 754 (1986).Google Scholar
  13. 13.
    K. G. Gurielidze, Ts. A. Giorgadze, E. P. Kemertelidze, and G. N. Pruidze, Localization of oligofurostanosides and the enzyme that cleaves them in leaves of Yucca gloriosa, Fiziol. Rast. 39: 300 (1992).Google Scholar
  14. 14.
    M. G. Vardosanidze, K. G. Gurielidze, G. N. Pruidze, and V. A. Paseshnichenko, Substrate specificity of glucosidase from Allium erubescens, Biokhimiya 56: 2025 (1991).Google Scholar
  15. 15.
    E. E. Conn, p-Glucosidases in plants: Substrate specificity, in: ß-Glucosidase, Biochemistry and Molecular Biology, A. Esen, Ed., Maple Press, York, PA (1993).Google Scholar
  16. 16.
    N. M. Papadopoulos and W. C. Hess, Determination of neuraminic (sialic) acid, glucose and fructose in spinal fluid, Arch. Biochem. Biophys. 88: 167 (1960).PubMedCrossRefGoogle Scholar
  17. 17.
    T. Murashige and F. Skoog, A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant, 15: 473 (1962).CrossRefGoogle Scholar
  18. 18.
    D. P. Dharmawardhana, B. E. Ellis, and J. E. Carlson, A p-glucosidase from lodgepole pine xylem specific for the lignin precursor coniferin, Plant Physiol, 107: 331 (1995).PubMedCrossRefGoogle Scholar
  19. 19.
    S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol. 215: 403 (1990).PubMedGoogle Scholar
  20. 20.
    D. R. Haisman, D. J. Knight, and M. J Ellis, The electrophoretic separation of the pglucosidases of almond “emulsin”, Phytochemistry 6: 1501 (1967).CrossRefGoogle Scholar
  21. 21.
    J. Conchie and G. A. Levvy, Inhibition of glycosidases by aldonolactones of corresponding configuration, Biochem. J. 65: 389 (1957).PubMedGoogle Scholar
  22. 22.
    G. Legler and A. Harder, Amino acid sequence at the active site of p-glucosidase A from bitter almonds, Biochim. Biophys. Acta 524: 102 (1978).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Esen, p-Glucosidases: overview, in: ß-Glucosidase, Biochemistry and Molecular Biology, A. Esen, Ed., Maple Press, York, PA (1993).Google Scholar
  24. 24.
    T. W.-M. Fan and E. E. Conn, Isolation and characterization of two p-glucosidases from flax seeds, Arch. Biochem. Biophys. 243: 361 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    G. W. Kuroki and J. E. Poulton, Comparison of kinetic and molecular properties of two forms of amygdalin hydrolase from black cherry (Prunus serotina Ehrn.) seeds, Arch. Biochem. Biophys. 247: 433 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Kojima, J. E. Poulton, S. Thayer, and E. E. Conn, Tissue distribution of dhurrin and of enzymes involved in its metabolism in leaves of Sorghum bicolor, Plant Physiol. 63: 1022 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    E. Swain, C. P. Li, and J. E. Poulton, Tissue and subcellular localization of enzymes catabolizing (R)-amygdalin in mature Prunus serotina seeds, Plant Physiol. 100: 291 (1992).PubMedCrossRefGoogle Scholar
  28. 28.
    28. J. E. Poulton and C. P. Li, Tissue level compartmentation of (R)-amygdalin and amygdalin hydrolase prevents large-scale cyanogenesis in undamaged Prunus seeds Plant Physiol. 104:29 (1994).Google Scholar
  29. 29.
    R. Maier, R. Carle, W. Kreis, and E. Reinhard, Purification and characterization of a flavone 7-O-glucoside-specific glucosidase from ligulate florets of Chamomilla recutita, Planta Med. 59: 436 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Kentaro Inoue
    • 1
  • Yutaka Ebizuka
    • 1
  1. 1.Faculty of Pharmaceutical SciencesThe University of TokyoTokyo 113Japan

Personalised recommendations