Saponin Detoxification by Plant Pathogenic Fungi

  • Anne E. Osbourn
  • Paul Bowyer
  • Michael J. Daniels
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 404)


Saponins are common plant secondary metabolites (glycosylated triterpenoid or steroid molecules) which are found in a wide range of dicotyledonous plant species, and also in some monocots1–5. Many saponins have been demonstrated to have potent antifungal activities and often occur in healthy plants at levels which are anticipated to be toxic to saponin-sensitive fungi6. This has led to speculation that saponins may act as pre-formed determinants of resistance to fungal attack. Van Etten et al.7 have proposed the term “phytoanticipin” to distinguish pre-formed antimicrobial substances from those induced de novo in response to pathogen attack (phytoalexins). By this definition saponins fall into the category of phytoanticipins. However, in some instances the concentrations of saponins have been reported to increase in response to microbial attack8,9.


Glycosyl Hydrolase Triterpenoid Saponin Target Gene Disruption Potent Antifungal Activity Steroidal Glycoalkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.B. Mahato, S. Sarkar, and G. Poddar, Triterpenoid saponins, Phytochemistry 27: 3037 (1988).CrossRefGoogle Scholar
  2. 2.
    S.B. Mahato and A.K. Nandy, Triterpenoid saponins discovered between 1987 and 1989, Phytochemistry 30: 1357 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    K. Hostettmann, M. Hostettmann, and A. Marston, Saponins, Methods in Plant Biochemistry 7: 435 (1991).Google Scholar
  4. 4.
    K.R. Price, I.T. Johnson, and G.R. Fenwick, The chemistry and biological significance of saponins in food and feedingstuffs, CRC Crit. Rev. Food Sci. Nutr. 26: 27 (1987).CrossRefGoogle Scholar
  5. 5.
    G.R. Fenwick, K.R. Price, C. Tsukamota, and K. Okubo, Saponins, in: Toxic Substances in Crop Plants, J.P. D’Mello, C.M. Duffus, and J.H. Duffus, eds., The Royal Society of Cambridge, Cambridge, pp. 285–327, (1992).Google Scholar
  6. 6.
    F. Schönbeck and E. Schlösser, Preformed substances as plant protectants, in: Physiological Plant Pathology, R. Heitefuss and P.H. Williams, eds., Springer-Verlag, Berlin, pp. 653–678 (1976).CrossRefGoogle Scholar
  7. 7.
    H.D. VanEtten, J.W. Mansfield, J.A. Bailey, and E.E. Farmer, Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”, The Plant Cell 9: 1191 (1994).Google Scholar
  8. 8.
    D.J. McCance and R.B. Drysdale, Production of tomatine and rishitin in tomato plants inoculated with Fusarium oxysporum f.sp. lycopersici, Physiol. Mol. Plant Pathol. 7: 221 (1975).CrossRefGoogle Scholar
  9. 9.
    G.F. Pegg, G.F. and S. Woodward, Synthesis and metabolism of a-tomatine in tomato isolines in relation to resistance to Verticillium albo-atrum, Physiol. Mol. Plant. Pathol. 28: 187 (1986).CrossRefGoogle Scholar
  10. 10.
    A.D. Bangham, and R.W. Home, Action of saponin on biological membranes, Nature, 196: 952 (1962).PubMedCrossRefGoogle Scholar
  11. 11.
    R.R. Dourmaskin, R.M. Dougherty, and R.J.C. Harris, Electron microscopic observations on Rous sarcoma virus and cell membranes, Nature 194: 1116 (1962).CrossRefGoogle Scholar
  12. 12.
    J.G. Roddick, and R.B. Drysdale, Destablization of liposome membranes by the steroidal glycoalkaloid a-tomatine, Phytochemistry 23: 543 (1984).CrossRefGoogle Scholar
  13. 13.
    C.C. Steel and R.B. Drysdale, Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by a-tomatine, Phytochemistry 27: 1025 (1988).CrossRefGoogle Scholar
  14. 14.
    H.U. Lüning and E. Schlösser, Role of saponins in antifungal resistance V. Enzymatic activation of avenacosides, Z. Pflanzenkrankh. Pflanzenschutz 82: 699 (1975).Google Scholar
  15. 15.
    R. Tschesche and W. Wiemann, Desgluco-avenacosid-A und -B, biologisch aktive Nuatigeninglycoside, Chem. Ber. 110: 2416 (1977).CrossRefGoogle Scholar
  16. 16.
    A. Nisius, The stromacentre in Avena plastids and aggregation of β-glucosidase responsible for the activation of oat-leaf saponins, Planta 173: 474 (1988).CrossRefGoogle Scholar
  17. 17.
    S. Gus-Mayer, H. Brunner, H.A.W. Schneider-Poetsch, and W. Rüdiger, Avenacosidase from oat: purification, sequence analysis and biochemical characterisation of a new member of the BGA family of β-glucosidases, Plant Mol. Biol. 26: 909 (1994).PubMedCrossRefGoogle Scholar
  18. 18.
    S. Gus-Mayer, H. Brunner, H.A.W. Schneider-Poetsch, F. Lottspeich, C. Eckerskorn, R. Grimm, and W. Rüdiger, The amino acid sequence previously attributed to a protein kinase or a TCP1-related molecular chaperone and co-purified with phytochrome is a β-glucosidase, FEBS Letts. 347: 51 (1994).CrossRefGoogle Scholar
  19. 19.
    E. Schlösser, Role of saponins in antifungal resistance. III. Tomatin dependant development of fruit rot organisms on tomato fruits, Z. Pflanzenkrankh. Pflanzenschutz 82: 476 (1975).Google Scholar
  20. 20.
    P.A. Arneson and R.D. Durbin, The sensitivity of fungi to α-tomatine, Phytopathology 58: 536 (1968).Google Scholar
  21. 21.
    A.E. Osbourn, P. Bowyer, G. Bryan, P. Lunness, B.R. Clarke, and M.J. Daniels, Detoxification of plant saponins by fungi, in: Advances in Molecular Genetics of Plant-Microbe Interactions, M.J. Daniels, J.A. Downie, and A.E. Osbourn, eds., Kluwer, Dordrecht, Vol.3, pp. 215–221 (1994).CrossRefGoogle Scholar
  22. 22.
    E.M. Turner, An enzymic basis for pathogen specificity in Ophiobolus graminis, J. Exp. Bot. 12: 169 (1961).CrossRefGoogle Scholar
  23. 23.
    W.M.L. Crombie, L. Crombie, J.B. Green, and J.A. Lucas, Pathogenicity of take-all fungus to oats: its relationship to the concentration and detoxification of the four avenacins, Phytochemistry 25: 2075 (1986).CrossRefGoogle Scholar
  24. 24.
    A.E. Osbourn, B.R. Clarke, J.M. Dow, J.M., and M.J. Daniels, Partial characterization of avenacinase from Gaeumannomyces graminis var. avenae, Physiol. Mol. Plant Pathol. 38: 301 (1991).CrossRefGoogle Scholar
  25. 25.
    P. Bowyer, B.R. Clarke, P. Lunness, M.J. Daniels, and A.E. Osbourn, Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme, Science 267: 371 (1995).PubMedCrossRefGoogle Scholar
  26. 26.
    R.D. Durbin and J.F. Uchytil, Purification and properties of a fungal β-glucosidase acting on a-tomatine, Biochim. Biophys. Acta 191: 176 (1969).PubMedCrossRefGoogle Scholar
  27. 27.
    J.E. Ford, DJ. McCance, and R.B. Drysdale, The detoxification of a-tomatine by Fusarium oxysporum f.sp. lycopersici, Phytochemistry 16: 545 (1977).CrossRefGoogle Scholar
  28. 28.
    K. Verhoeff and J.I. Liem, Toxicity of tomatine to Botrytis cinerea, in relation to latency, Phytopath. Z. 82: 333 (1975).CrossRefGoogle Scholar
  29. 29.
    L. Crombie, W.M.L. Crombie, and D.A. Whiting, Isolation of avenacins A-1, A-2, B-1 and B-2 from oat roots: structures of their aglycones, the avenestergenins, J. Chem. Soc., Chem. Commun. 244: 246 (1984).CrossRefGoogle Scholar
  30. 30.
    L. Crombie, W.M.L. Crombie, and D.A. Whiting, Structures of the oat root resistance factors to take-all disease, avenacins A-1, A-2, B-1 and B-2 and their companion substances, J. Chem. Soc. Perkin Trans. I: 1917 (1986).CrossRefGoogle Scholar
  31. 31.
    W.M.L. Crombie and L. Crombie, Distribution of the avenacins A-1, A-2, B-1 and B-2 in oat roots: their fungicidal activity towards take-all fungus, Phytochemistry 25: 2069 (1986).CrossRefGoogle Scholar
  32. 32.
    E.M. Turner, The nature of the resistance of oats to the take-all fungus. III. Distribution of the inhibitor in oat seeedlings, J. Exp. Bot. 11: 403 (1960).CrossRefGoogle Scholar
  33. 33.
    R.H. Goodwin and B.M. Pollock, Studies on mots. I. Properties and distribution of fluorescent constituents in Avena roots, Am. J. Bot. 4: 516 (1954).CrossRefGoogle Scholar
  34. 34.
    A.E. Osbourn, B.R. Clarke, P. Lunness, P.R. Scott and M.J. Daniels, An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici, Physiol. Mol. Plant Pathol. 45: 457 (1994).CrossRefGoogle Scholar
  35. 35.
    J.V. Maizel, H.J. Burkhardt, and H.K. Mitchell, Avenacin, an antimicrobial substance isolated from Avena sativa, Biochemistry 3: 424 (1964).PubMedCrossRefGoogle Scholar
  36. 36.
    H.U. Lüning and E. Schlösser, Saponine in Avena saliva, Angewandte Botanik 50: 49 (1976).Google Scholar
  37. 37.
    T.D. Fontaine, J.S. Ard, and R.M. Ma, Tomatidine, a steroid secondary amine, J. Amer. Chem. Soc. 73: 878 (1951).CrossRefGoogle Scholar
  38. 38.
    J.M. Henson, N.K. Blake, and A.L. Pilgeram, Transformation of Gaeumannomyces graminis to benomyl resistance, Curr. Genet. 14: 113 (1988).CrossRefGoogle Scholar
  39. 39.
    B. Henrissat, A classification of glycosyl hydrolases based on amino acid sequence similarities, Biochem. J. 280: 309 (1991).PubMedGoogle Scholar
  40. 40.
    C.C. Barnett, R.M. Berka, and T. Fowler, Cloning and amplification of the gene encoding an extracellular β-glucosidase from Trichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates, Bio/Technology 9: 562 (1991).PubMedCrossRefGoogle Scholar
  41. 41.
    M. Machida, I. Ohtsuki, S. Fukui, and I. Yamashita, Nucleotide sequence of Saccharomycopsis fibuligera genes for extracellular β-glucosidases as expressed in Saccharomyces cerevisiae, Appl. Env. Microbiol. 54: 3147 (1988).Google Scholar
  42. 42.
    C. Kohchi and A. Tohe, Nucleotide sequence of Candida pelliculosa β-glucosidase gene, Nucleic Acids Res. 13: 6273 (1985).PubMedCrossRefGoogle Scholar
  43. 42.
    E. Bause and G. Legler, Isolation and structure of a tryptic glycopeptide from the active site of βglucosidase A3 from Aspergillus wentii, Biochim. Biophys. Acta 626: 459 (1980).PubMedCrossRefGoogle Scholar
  44. 44.
    P.A. Arneson and R.D. Durbin, Studies on the mode of action of tomatine as a fungitoxic agent, Plant Physiol. 1968, 43, 683–686.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Anne E. Osbourn
    • 1
  • Paul Bowyer
    • 1
  • Michael J. Daniels
    • 1
  1. 1.Sainsbury LaboratoryJohn Innes CentreColney Lane, NorwichUK

Personalised recommendations