Advertisement

Purification and Properties of UDP-Glucose : Diosgenin/Tigogenin Glucosyltransferase from Solanum melongena Leaves

  • Cezary Paczkowski
  • Zdzislaw A. Wojciechowski
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 404)

Abstract

Spirostanol 3-O-oligosides (steroid saponins) are widely distributed in the plant kingdom, particularly in species belonging to the Liliaceae, Scrophulariaceae, Dios­coreaceae, Zygophyllaceae, and Solanaceae families1,2. The importance of these glycosides for chemical protection of plants against microbial pathogens and/or herbivores has been suggested3,4. The frequently observed fungitoxic, antiviral, cytostatic, and hypocholestero­lemic activities6 of steroid saponins showed that these compounds are of more than academic interest. There are, however, only sparse data on the formation of steroid saponins in plants, especially at the enzyme level. The major part of information concerning the biosynthesis of these compounds is derived from experiments in which more or less distant labeled precursors (e.g. acetate, mevalonate, or cholesterol) were fed to the intact plants, plant organs, or cell cultures7,8. These experiments have elucidated in outline the biosynthetic pathways leading to the formation of spirostanol aglycones but until recently almost nothing was known about the synthesis of sugar chains of steroid saponins.

Keywords

Ammonium Sulfate Cytosol Fraction Sugar Chain Steroid Saponin Acetone Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.B. Mahato, A.N. Ganguly and N.P. Sahu, Steroid saponins, Phytochemistry 21: 959 (1982).CrossRefGoogle Scholar
  2. 2.
    T. Nohara, Analysis of steroid sapogenins, in: Analysis of Sterols and Other Biologically Significant Steroids, W.D. Nes and E.J. Parish, Eds., Academic Press, San Diego (1989).Google Scholar
  3. 3.
    J.G. Roddick, Antifungal activity of plant steroids, in: Ecology and Metabolism of Plant Lipids, G. Fuller and W.D. Nes, Eds., American Chemical Society, Washington, DC (1987).Google Scholar
  4. 4.
    S. Grünweller, E. Schröder and J. Kesselmeier, Biological activities of furostanol saponins from Nicotiana tabacum, Phytochemistry 29: 2485 (1990).CrossRefGoogle Scholar
  5. 5.
    T. Kawasaki, Spirostanol and furostanol type, in: Natural Products for Medicinal Use, S. Shibata, Ed., Nanzando Co., Tokyo (1982).Google Scholar
  6. 6.
    P.K. Kintia, G.W. Lazurevskii, N.N. Balashova, I.T. Balashova, A.I. Suruzhyu and W A. Lach, Structure and Biological Activity of Steroid Glycosides of Spirostane and Furostane Type (in Russian), Shtiinca, Kishinev (1987).Google Scholar
  7. 7.
    E. Heftmann, Biogenesis of steroids in Solanaceae, Phytochemistry 22: 1843 (1983).CrossRefGoogle Scholar
  8. 8.
    V.A. Pasechnichenko, Biosynthesis and Biological Activity of Plant Terpenoids and Steroids (in Russian), Viniti, Moscow (1987).Google Scholar
  9. 9.
    M. Kalinowska and Z.A. Wojciechowski, Enzymatic synthesis of nuatigenin 3 ß-D-glucoside in oat (Avena sativa L.) leaves, Phytochemistry 25: 2525 (1986).CrossRefGoogle Scholar
  10. 10.
    M. Kalinowska and Z.A. Wojciechowski, Subcellular localization of UDPG: nuatigenin glucosyltransferase in oat leaves, Phytochemistry 26: 353 (1987).CrossRefGoogle Scholar
  11. 11.
    M. Kalinowska and Z.A. Wojciechowski, Substrate specificity of partially purified UDP-glucose: nuatigenin glucosyltransferase from oat leaves, Plant Sci. 55: 239 (1988).CrossRefGoogle Scholar
  12. 12.
    C. Pgczkowski and Z.A. Wojciechowski, The occurrence of UDPG-dependent glucosyltransferase specific for sarsasapogenin in Asparagus officinalis, Phytochemistry 27: 2743 (1988).CrossRefGoogle Scholar
  13. 13.
    C. Pgczkowski, J. Zimowski, D. Krawczyk and Z.A. Wojciechowski, Steroid specific glucosyltransferases in Asparagus plumosus shoots, Phytochemistry 29: 63 (1990).CrossRefGoogle Scholar
  14. 14.
    C. Pgczkowski and Z.A. Wojciechowski, Glucosylation and galactosylation of diosgenin and solasodine by soluble glucosyltransferase(s) from Solanum melongena leaves, Phytochemistry 35: 1429 (1994).CrossRefGoogle Scholar
  15. 15.
    P.K. Kintia and S.A. Shvets, Melongoside L and melongoside M - steroidal saponins from Solanum melongena seeds, Phytochemistry 24: 197 (1985).CrossRefGoogle Scholar
  16. 16.
    P.K. Kintia and S.A. Shvets, Melongosides N, O and P - steroidal saponins from seeds of Solanum melongena, Phytochemistry 24: 1567 (1985).CrossRefGoogle Scholar
  17. 17.
    M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analyt. Biochem. 72: 248 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    Z.A. Wojciechowski, J. Zimowski. J.G. Zimowski and A. Lyznik, Specificity of sterol-glucosylating enzymes from Sinapis alba and Physarum polycephalum, Biochim. Biophys. Acta 570: 363 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    U. Keil and P. Schreier, Purification and partial characterization of UDP-glucose: phenol- 3-Dglucosyltransferase from papaya fruit, Phytochemistry 28: 2281 (1989).CrossRefGoogle Scholar
  20. 20.
    A. Bechthold, U. Berger and L. Heide, Partial purification, properties and kinetic studies of UDPglucose: p-hydroxybenzoate glucosyltransferase from cell cultures of Lithospermum erythrorhizon, Arch. Biochem. Biophys. 288: 38 (1991).CrossRefGoogle Scholar
  21. 21.
    O.P. Sati and G. Pant, Spirostanol glycosides from Asparagus plumosus, Phytochemistry 24: 123 (1984).CrossRefGoogle Scholar
  22. 22.
    G.M. Goryanu, V.V. Krohmalyuk and P.K. Kintia, Structure of asparagosides A and B from Asparagus officinalis (in Russian), Khim. Prir. Soedin. 3: 400 (1976).Google Scholar
  23. 23.
    R.A. Joly, J. Bonner, RD. Bennett and E. Heftmann, Conversion of cholesterol to an open-chain saponin by Dioscorea floribunda, Phytochemistry 8: 857 (1969).CrossRefGoogle Scholar
  24. 24.
    F. Ronchetti, G. Russo, G. Ferrara and G. Vecchio, The role of (25S)-5a-cholestane-3f3,26-diol and (25S)-5a-furostane-313,26-diol in the biosynthesis of tomatidine and neotigogenin, Phytochemistry 13: 2423 (1975).CrossRefGoogle Scholar
  25. 25.
    K.G. Gurielidze, V.A. Pasechnichenko and I.S. Vasilieva, Glucohydrolase from the leaves and roots of Dioscorea deltoidea Wall, Biokhirnya 52: 562 (1987).Google Scholar
  26. 26.
    B. Tal, J. Tamir, J.S. Rokem and J. Goldberg, Isolation and characterization of an intermediate steroid metabolite in diosgenin biosynthesis in suspension cultures of Dioscorea deltoidea cells, Biochem. J. 219: 619 (1984).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Cezary Paczkowski
    • 1
  • Zdzislaw A. Wojciechowski
    • 1
  1. 1.Department of BiochemistryWarsaw UniversityWarszawaPoland

Personalised recommendations