Metabolites of Nuatigenin ((22S,25S)22,25-Epoxy-3β,26-Dihydroxy-Furost-5-Ene) Accumulate in the Bile of Rabbits Fed Oats

  • Jan St. Pyrek
  • Suresht K. Aggarval
  • Perry Barboza
  • Jack P. Goodman
  • Pei-Ying Yang
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 404)


In spite of frequent occurrence of steroidal saponins in nutritionally important plants, little is known about metabolism of the corresponding sapogenols. Only relatively recent data indicate that certain saponins are of a considerable health significance to livestock and this toxicity seems to be related to discrete metabolites of sapogenols identified in the bile. It has been noted that lambs grazing on a kleingrass, Panicum coloratum, develop photosensitization secondary to the hepatic dysfunction with lesions, necrosis of hepatocytes and obstruction of small bile ducts with a crystalline material.1 Similar material, accumulating in sheep fed Agave lecheguilla, has been identified as either smilagenin ((25R)3β-hydroxy-5β-spirostane) la or sarsapogenin ((25S)3β-hydroxy-5β-spirostane) 2a.2 Diosgenin ((25R)3β-hydroxyspirost-5-ene) 3 and yamogenin ((25R)3β-hydroxyspirost-5-ene) 4, released from saponins of P. coloratum upon hydrolysis, may give rise to these insoluble products.3 Two related species, P. dichotomiflorum and P. schinzii, are also hepatotoxic to sheep and their intake causes accumulation of a calcium salt of β-D-glucuronide of epi-smilagenin ((25R)3α-hydroxy-5β-spirostane) lb.4,5,6,7 Subsequently, however, the true sapogenol of P. dichotomiflorum has been identified as (25R)-3β,22α,26-trihydroxy-furost-5-ene 5.8 Thus, in case of Panicum, furostanols and not spirostanols may serve as precursors of these bile-insoluble products. In addition, it has been found that in case of the intoxication of sheep grazing on signal grass Brachiaria decumbens, epi-sarsapogenin ((25S)3α-hydroxy-5β-spirostane) 2b and epi-smilagenin lb accumulate in the rumen content,9,10 whereas feeding furostanol saponins of Trigonella foenum graecum to dogs results in the fecal excretion of smilagenin la, diosgenin 3, and gitogenin ((25R)2α, 3β-dihydroxy-5α-spirostane) 6.11


Bile Acid Sheep Grazing Steroidal Saponin Steroidal Sapogenin Hyodeoxycholic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. H. Bridges, B. J. Camp, C. W. Livingston, and E. M. Bailey, Kleingrass (Panicum coloratum L.) poisoning in sheep. Vet. Pathol., 24: 525–531 (1987).PubMedGoogle Scholar
  2. 2.
    B. J. Camp, C. H. Bridges, D. W. Hill, B. Patomalai, and S. Wilson, Isolation of steroidal sapogenin from the bile of a sheep fed Agave lecheguilla. Vet. Hum. Toxicol., 30: 533–535 (1988).Google Scholar
  3. 3.
    B. Patomalai, C. H. Bridges, D. W. Hill, and B. J. Camp, The isolation and identification of steroidal sapogenins in kleingrass. Vet. Hum. Toxicol., 32: 314–318 (1990).Google Scholar
  4. 4.
    P. T. Holland, C. 0. Miles, P. H. Mortimer, A. L. Wilkins, A. D. Hawkes, and B. L. Smith, Isolation of steroidal sapogenin from the bile of sheep affected by Panicum dichotomiflorum toxicosis. J. Agric. Food Chem., 39: 1963–1935 (1991).CrossRefGoogle Scholar
  5. 5.
    C. 0. Miles, S. C. Munday, P. T. Holland, B. L. Smith, P.P. Embling, and A. L. Wilkins. Identification of a sapogenin glucuronide in the bile of sheep affected Panicum dichotomiflorum toxicosis. New Zealand Vet. J., 39: 150–152 (1991).CrossRefGoogle Scholar
  6. 6.
    C. 0. Miles, S. C. Munday, P. T. Holland, M. J. Lancaster, and A. L. Wilkins, Further analysis of bile crystals from sheep grazing Panicum schinzii (sweet grass). Aust. J. Vet. Med., 69: 34 (1992).CrossRefGoogle Scholar
  7. 7.
    C. 0. Miles, A. L. Wilkins, A. C. Munday, P. T. Holland, B. L. Smith, M. J. Lancaster, and P. P. Embling, Identification of the calcium salt of epismilagenin 3-D-glucuronide in the bile crystals of sheep affected by Panicum dichotomiflorum and Panicum schinzii toxicoses. J. Agric. Food Chem., 40: 1606–1609 (1992).CrossRefGoogle Scholar
  8. 8.
    S. C. Munday, A. L. Wilkins, C. 0. Miles, and P. T. Holland, Isolation and structure elucidation of dichotomin, a furostanol saponin implicated in hepatogenous photosensitization of sheep grazing Panicum dichotomiflorum. J. Agric. Food Chem., 41: 267–271 (1993).CrossRefGoogle Scholar
  9. 9.
    A. S. Abdullah, N. H. Lajis, J. B. Bremner, N. W. Davies, W. Mustapha, and M. A. Rajion, Hepatotoxic constituents in the rumen of Brachiaria decumbens-intoxicated sheep. Vet. Hum. Toxicol., 34: 154–155 (1992).PubMedGoogle Scholar
  10. 10.
    N. H. Lajis, A. Salam H. Abdullah, S. J. S. Salim, J. B. Bremner, and M. N. Khan, Epi-sarsapogenin and epi-smilagenin: two sapogenins isolated from the rumen of sheep intoxicated by Brachiaria decumbens. Steroids, 58: 387–389 (1993).Google Scholar
  11. 11.
    Y. Sauvaire, G. Ribes, J-C. Baccou, and M-M. Loubatires-Mariani, Implication of steroidal saponins and sapogenins in the hypocholesterolemic effect of fenugreek. Lipids, 26: 191–197 (1991).PubMedCrossRefGoogle Scholar
  12. 12.
    W. H. Pearlman, A study of the neutral, non-saponifiable fraction of ox bile. J. Am. Chem. Soc., 66, 806–809 (1944).CrossRefGoogle Scholar
  13. 13.
    N. J. Antia, Y. Mazur, R. R. Wilson, and F. S. Spring, Isolation of cholegenin and isocholegenin from ox-bile. J. Chem. Soc., 1218–1222 (1954).Google Scholar
  14. 14.
    Y. Mazur and F. S. Spring, The structure of cholegenin and isocholegenin. J. Chem. Soc., 1223–1226 (1954).Google Scholar
  15. 15.
    M. J. Thompson, I. Scheer, and E. Mosettig, 16,22-Epoxycoprostane-3a,26,27-triol and its non-identity with dihydrocholegenin. J. Am. Chem. Soc., 81: 5225–5230 (1959).CrossRefGoogle Scholar
  16. 16.
    M. J. Thompson, I. Scheer, and E. Mosettig, Structure of cholegenin, isocholegenin and dihydrocholegenin. J. Am. Chem. Soc., 81: 5222–5224 (1959).CrossRefGoogle Scholar
  17. 17.
    R. Tschesche und K. H. Richert, Nuatigenin, ein Cholegenin-Analogon des Pflanzenreiches. Tetrahedron, 20: 387–398 (1964).CrossRefGoogle Scholar
  18. 18.
    R. Tschesche und W. Schmidt, Zwei neue Saponine der oberirdischen Teil des Hafers (Avena sativa) mit Nuatigenin als Aglycon. Z. Naturforsch., Teil B, 21: 896–897 (1966).Google Scholar
  19. 19.
    H. Budzikiewicz, C. Djerassi, and D. H. Williams, Steroidal sapogenins, in: Structure Elucidation of Natural Products by Mass Spectrometry, Vol. 2, Holden-Day, San Francisco (1964).Google Scholar
  20. 20.
    S. P. Lee, R. Lester, and J. St. Pyrek, Vulpecholic acid (la,3a,7a-trihydroxy-5ß-cholan-24-oic acid): a novel bile acid from a marsupial Trichosurus vulpecula Lesson. J. Lipid Res., 28: 19–31 (1987).PubMedGoogle Scholar
  21. 21.
    J. St. Pyrek, S. P. Lee, L. Thomase, C. Tasman-Jones, and B. Leydon, Hepatic formation of vulpecholic acid (la,3a,7a-trihydroxy-5ß-cholan-24-oic acid) from chenodeoxycholic acid in a marsupial Trichosurus vulpecula Lesson. J. Lipid Res., 32: 1417–1428 (1991).Google Scholar
  22. 22.
    J. St. Pyrek, G. Cynkowska, J. P. Goodman, P. Barboza, S. Cork, and S. P. Lee, Bile acids of marsupials: the first demonstration of the natural occurrence of 3,15-dihydroxylated bile acids in the bile of two wombats, Vombatus ursinus and Lasiorhinus lagons. Int. Congress Nat. Products & 32nd Meeting of ASP, Chicago, IL (1991).Google Scholar
  23. 23.
    R. Tschesche, M. Tauscher, H-W. Felhaber und G. Wulff, Avenacoside A, ein bisdesmosidisches Steroidsaponin aus Avena sativa. Chem. Ber., 102: 2072–2082 (1969).CrossRefGoogle Scholar
  24. 24.
    A. K. Chakravarty, C. R. Saha, T. K. Dhar, and S. C. Pakrashi, Constituents of some Solanum species & mass spectra of nuatigenin & isonuatigenin. Indian J. Chem., 19B: 468–472 (1980).Google Scholar
  25. 25.
    J. W. Blunt and J. B. Stothers, 13C N.m.r. spectra of steroids - a survey and commentary. Org . Magn. Res., 9: 439–464 (1977).Google Scholar
  26. 26.
    S. Barnes and D. N. Kirk, Nuclear Magenetic Resonance, in: The Bile Acids, Chemistry, Physiology, and Metabolism, Vol. 4, K. D. R. Setchell, D. Kritchevsky, and P. P. Nair, ed., Plenum Press, New York and London (1988).Google Scholar
  27. 27.
    P. K. Agrawal, D. C. Jain, R. K. Gupta and R. S. Thakur, Carbon-13 NMR spectroscopy of steroidal sapogenins and steroidal saponins. Phytochemistry, 24: 2479–2496 (1985).CrossRefGoogle Scholar
  28. 28.
    J. W. Anderson, and J. Tietyen-Clark, Dietary fiber: hyperlipidemia, hypertension, and coronary heart disease. Am. J. Gastroent., 81, 907–919 (1986).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Jan St. Pyrek
    • 1
    • 3
  • Suresht K. Aggarval
    • 1
  • Perry Barboza
    • 2
  • Jack P. Goodman
    • 1
  • Pei-Ying Yang
    • 1
  1. 1.University of Kentucky Mass Spectrometry Facility & College of PharmacyUniversity of KentuckyLexingtonUSA
  2. 2.University of New EnglandArmidaleAustralia
  3. 3.University of Kentucky Mass Spectrometry FacilityLexingtonUSA

Personalised recommendations