Advertisement

New Biologically Active Steroidal and Triterpenoid Glycosides from Medicinal Plants

  • R. Aquino
  • F. De Simone
  • N. De Tommasi
  • S. Piacente
  • C. Pizza
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 404)

Abstract

As a consequence of the renewed interest in the search for new substances of natural origin as potential candidates in drug development, since 1980 our research group has been investigating higher plants employed in Italian, Chinese, African and South American traditional medicine.

Keywords

Glycyrrhizic Acid Triterpenic Glycoside Triterpenoid Saponin ROESY Experiment Acid Glycoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Cerri, R. Aquino, F. De Simone, and C. Pizza, New quinovic acid glycosides from Uncaria tomentosa, J. Nat. Prod., 51: 257 (1988).CrossRefGoogle Scholar
  2. 2.
    R. Aquino, F. De Simone, C. Pizza, C. Conti, and M.L. Stein, Plant metabolites: structure and in vitro antiviral activity of quinovic acid glycosides from Uncaria tomentosa and Guettarda platypoda, J. Nat. Prod. 52: 679 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Aquino, V. De Feo, F. De Simone, C. Pizza, and G. Cirino, New compounds and anti-inflammatory activity of Uncaria tomentosa, J. Nat. Prod. 54: 453 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    A.M. Yepez, O.L. de Ugaz, C.M. Alvarez, R. Aquino, V. De Feo, F. De Simone, and C. Pizza, Quinovic acid glycosides from Unearia guianensis, Phytochetnistry 30: 1635 (1991).CrossRefGoogle Scholar
  5. 5.
    R. Aquino, F. De Simone, C. Pizza, R. Cern, and J. F. De Mello, Quinovic acid glycosides from Guettarda platypoda, Phytochemistry 27: 2927 (1988).CrossRefGoogle Scholar
  6. 6.
    R. Aquino, F. De Simone, C. Pizza, and J.F. De Mello, Further quinovic acid glycosides from Guettarda platypoda, Phytochemistry 28: 199 (1989).CrossRefGoogle Scholar
  7. 7.
    N. De Tommasi, S. Piacente, F. De Simone, C. Pizza, and Z.Z.Liang, Characterization of three new triterpenoid saponins from Ardisia japonica, J. Nat. Prod. 56: 1669 (1993).PubMedCrossRefGoogle Scholar
  8. 8.
    L. Pistelli, A.R. Bilia, A. Marsili, N. De Tommasi, and A. Manunta, Triterpenoids saponins from Bupleurum fruticosum, J. Nat. Prod. 55: 240 (1993).CrossRefGoogle Scholar
  9. 9.
    H..Ishii, I. Kitagawa, K. Matsushita, K. Shirakawa, K. Ton, T. Tozyo, M. Yoshikawa, and Y. Yoshimura, The configuration and conformation of the arabinose moiety in platycodins, saponins isolated from Platycodon grandiflorutn, and mi-saponins from Madhuca longifolia based on carbon-13 hydrogen-1 NMR spectroscopic evidence, Tetrahedron Lea. 23: 1529 (1981).Google Scholar
  10. 10.
    S. Piacente, C. Pizza, N. De Tommasi, and F. De Simone, New dammarane-type glycosides from Gynostemma pentaphvllum, J. Nat. Prod 58: 512 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Iwamoto, T. Fujioka, H. Okabe, K. Mihashi, and T. Yamauchi, Studies on the constituents of Actinosternma lobatum Maxim. 1. Structures of actinostemmosides A, B, C and D, Dammarane triterpenes glycosides isolated from the Herb, Chem. Pharm. Bull. 35: 553 (1987).CrossRefGoogle Scholar
  12. 12.
    J. Asakawa, R. Kasai, K. Yamasaki, and O. Tanaka, 13C NMR Study of Ginseng sapogenins and their related dammarane-type triterpenes, Tetrahedron 33: 1935 (1977).Google Scholar
  13. 13.
    W. Junxian, C. Liangyu, W. Jufen, E. Friedrichs, M. Jores, H. Puff, C. Wein-shin, and E. Breitmeier, Two new dammarane sapogenins from leaves of Panax notoginseng, Planta Med. 45: 167 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    M. Terri, R. Matsuda, M. Sono, and Y. Asawaka, 13C NMR assignments of dammarane triterpenes and dendropanoxide: application of 2D long-range correlation 13C–1H spectra, Magn. Res. Chem. 26: 581 (1988).CrossRefGoogle Scholar
  15. 15.
    R. Pompei, O. Flore, M.A. Marciallis, A. Pani, and B. Loddo, Glycyrrhizic acid inhibits virus growth and inactivates virus particles, Nature 281: 689 (1979).PubMedCrossRefGoogle Scholar
  16. 16.
    N. De Tommasi, C. Conti, M. L. Stein, and C. Pizza, Structure and in vitro antiviral activity of triterpenoid saponins from Calendula arvensis, Planta Med. 57: 251 (1991).Google Scholar
  17. 17.
    R. Aquino, F. De Simone, A. Dini, O. Schettino, and C. Pizza, Oligofurostanosides from Asparagus cochinchinensis, Planta Med. 54: 344 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    R. Aquino, I. Behar, F. De Simone, C. Pizza, and M. D’ Agostino, Dioscin and gracillin from Tamus communis, J. Nat. Prod. 48: 502 (1985).CrossRefGoogle Scholar
  19. 19.
    R. Aquino, I. Behar, F. De Simone, M. D’Agostino, and C. Pizza, Furostanol glycosides from Tamus communis, J. Nat. Prod. 49: 1096 (1986).CrossRefGoogle Scholar
  20. 20.
    S.B. Singh, R.S. Thakur, and H.R. Schulten, Furostanol saponins from Paris polyphylla structures of polyphyllin G and H, Phytochemistry 21: 2079 (1982).CrossRefGoogle Scholar
  21. 21.
    R. Aquino, C. Conti, F. De Simone, N. Orsi, C. Pizza, and M.L. Stein, Antiviral activity of constituents of Tamus communis, J. Chemother. 3: 305 (1991).PubMedGoogle Scholar
  22. 22.
    C.Y. Duh, J.M. Pezzuto, A.D. Kinghorn, S.L. Lenny, and N.R. Farnsworth, Plant anticancer agents XLIV. Cytotoxic constituents from Stizophyllum riparium, J. Nat. Prod. 50: 63 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    S. Yoshimura, H. Narita, K. Hayashi, and H. Mitsuhashi, Studies on the constituents of Asclepiadaceae plants LXI. Isolation of new antitumor-active glycosides from Degea volubilis (L) Benth, Chem. Pharm. Bull. 31: 3971 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    R. Aquino, C. Pizza, N. De Tommasi and F. De Simone, New polyoxypregnane ester derivatives from Leptadenia bastata, J. Nat. Prod. 58: 672 (1995).PubMedCrossRefGoogle Scholar
  25. 25.
    N. De Tommasi, F. De Simone, C. Pizza, R. Aquino, and G. Peluso, Further new polyoxypregnane ester derivatives from Leptadenia hastata, J. Nat. Prod. in press.Google Scholar
  26. 26.
    S. Yoshimura, H. Narita, K. Hayashi, and H. Mitsuhashi, Studies on the constituents of Asclepiadaceae plants LX. Further studies on glycosides with a novel sugar chain containing a pair optically isomeric sugars, D and L-cymarose, from Cynanchum wilfordi, Chem. Pharm. Bull. 33: 2294 (1985).CrossRefGoogle Scholar
  27. 27.
    T. Yamagishi, K. Hayashi, H. Mitsuhashi, M. Imanari, and K. Matsushita, Carbon-13 nuclear magnetic resonance spectroscopy of C/D-cis polyoxypregnanes I., Tetrahedron Lett. 37: 3527 (1973).CrossRefGoogle Scholar
  28. 28.
    Z.X. Zhang, J. Zhou, K. Hayashi, and H. Mitsuhashi, S. Yoshimura, H. Narita, K. Hayashi, and H. Mitsuhashi, Studies on the constituents of Asclepiadaceae plants LVIII. The structures of five glycosides, cynatroside-A, -B, -C, -D, and -E, from the Chinese drug “Pai-wei”, Cynanchum atratum Burge, Chem. Pharm. Bull. 33: 1507 (1985).PubMedCrossRefGoogle Scholar
  29. 29.
    T. Nakagawa, K. Hayashi, and H. Mitsuhashi, S. Yoshimura, H. Narita, K. Hayashi, and H. Mitsuhashi, Studies on the constituents of Asclepiadaceae plants LV. The structures of three new glycosides, glaucoside -H, -I, and -J from the Chinese drug “Pai-ch’ien”, Cynanchum glaucescens HandMazz, Chem. Pharm. Bull. 31: 2244 (1983).CrossRefGoogle Scholar
  30. 30.
    K. Hayashi, I. Ida, Y. Nakao, Y. Nakao and K. Kaneko, Four pregnane glycosides, boucerosides AI, AII, BI and BII from Boucerosia aucheriana, Phytochemistry 27: 3919 (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • R. Aquino
    • 1
  • F. De Simone
    • 2
  • N. De Tommasi
    • 2
  • S. Piacente
    • 1
  • C. Pizza
    • 2
  1. 1.Dipartimento di Chemica delle Sostanze NaturaliNapoliItaly
  2. 2.Facoltà di FarmaciaPenta di Fisciano SalernoItaly

Personalised recommendations