Advertisement

Structural and Antimalarial Studies of Saponins from Nauclea diderrichii Bark

  • Maroufath Lamidi
  • Evelyne Ollivier
  • Monique Gasquet
  • Robert Faure
  • Lucienne Nzé-Ekekang
  • Guy Balansard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 404)

Abstract

In most developing tropical countries, 80 per cent of the population use traditional medicine, in particular against parasitic diseases. Among these infections, malaria is very widespread. In most tropical countries, 500 million people are attacked annually by this disease, resulting in 1 million deaths in the world. In Africa the ethnobotanical studies show that in addition to the well known quinquina, different plants from the Rubiaceae family are used such as Gardenia ternifolia, Morinda lucida, Pavetta crassipes, Nauclea latifolia and Nauclea diderrichii. In the search to find new antimalarial compounds, we have studied Nauclea diderrichii (de Wild) Merr.

Keywords

High Performance Liquid Chromatography Thin Layer Chromatography Plasmodium Falciparum Sodium Salt Antimalarial Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Halle, Rubiacees, Flore du Gabon, Museum National d’Histoire Naturelle, Paris n° 12 (part I), p 44 (1966)Google Scholar
  2. 2.
    A. Walker and R. Silans, Rubiacees, in Les Plantes utiles du Gabon, Paul Lechevalier, Paris, p 373 (1961).Google Scholar
  3. 3.
    A. Bouquet, Rubiacées, In Féticheurs et Médecines traditionnelles du Congo (Brazzaville), ORSTOM, Paris, p 212 (1969).Google Scholar
  4. 4.
    A.O. Adeoye and D.R. Waigh, Secoiridoid and triterpenic acids from the stems of Nauclea diderrichii, Phytochemistry 22: 975 (1983)CrossRefGoogle Scholar
  5. 5.
    D. Murray, A. Szacolcai and S. McLean, Constituents of Nauclea diderrichii. Part III. Indole-pyridine alkaloids, Can. J. Chem. 50: 1486 (1972)CrossRefGoogle Scholar
  6. 6.
    S. McLean and D.G. Murray, The constituents of Nauclea diderrichii. Part IV. Miscellaneous Substances; Biogenetic Considerations, Can. J. Chem. 50: 1496 (1972)CrossRefGoogle Scholar
  7. 7.
    S. McLean, G.I. Dmitrienko, I. Gary and A. Szacolcai, Constituents of Nauclea diderrichii. Part VII. Synthesis of nauclederine, naucleonine, and naucleonidine; spectroscopic evidence for the structures of 3a-dihydrocadambine and two other constituents, Can. J. Chem. 54: 1262 (1976)CrossRefGoogle Scholar
  8. 8.
    G. I. Dmitrienko, A. Szakolcai and S. McLean, Constituents of Nauclea diderrichii. Part VI. Naucleonine and naucleonidine, Tetrahedron Lett. 30: 2599 (1974)CrossRefGoogle Scholar
  9. 9.
    N. Gavin, S. Saunders, G.R. Hamilton and S. McLean, Synthesis of 3adihydrocadambine, Tetrahedron Lett. 23: 2359 (1983)Google Scholar
  10. 10.
    A.O. Adeoye and D. R. Waigh, Desoxycordifolinic acid from Nauclea diderrichii, Phytochemistry 22: 2097 (1983)CrossRefGoogle Scholar
  11. 11.
    S. McLean and D.G. Murray, Isolation of indole (p-carboline) pyridine, and indole-pyridine alkaloids from Nauclea diderrichii, Can. J. Chem. 48: 867 (1970)CrossRefGoogle Scholar
  12. 12.
    S. McLean and D.G. Murray, Constituents of Nauclea diderrichii. Part II. Isolation and classification of constituents; simple p-carboline and pyridine alkaloids, Can J. Chem. 50: 1478 (1972)CrossRefGoogle Scholar
  13. 13.
    B. Richard, M. Zeches, L. Le Men-Olivier and C. Delaude, Contribution à l’étude de Naucleae africaines: constituants de feuilles de Nauclea diderrichii, Bull. Soc. Roy. Sci. de Liège. 21: 423 (1992)Google Scholar
  14. 14.
    J. Purdy and S. McLean, Constituents of Nauclea diderrichii. Part VIII. Tetrahedron Lett. 29: 2511 (1976)CrossRefGoogle Scholar
  15. 15.
    F.E. King and L. Jurd, The chemistry of extractives from hardwoods. Part XII. The cyclitols and steroids of Opepe (Sarcocephalus diderrichii), J. Chem. Soc. 1192 (1953)Google Scholar
  16. 16.
    A.O. Adeoye and S.R. Hemingay, A rapid method for the identification of fatty acid and sterol constituents of complex sterol ester mixtures, J. Pharm. Pharmacol. 33: 53 (1981)CrossRefGoogle Scholar
  17. 17.
    M. Lamidi, E. Ollivier, R. Faure, L. Debrauwer, L. Nze-Ekekang and G. Balansard, Quinovic acid glycosides from Nauclea diderrichii, Phytochemistry 38: 209 (1995)CrossRefGoogle Scholar
  18. 18.
    M. Lamidi, E. 011ivier, R. Faure, L. Debrauwer, L. Nze-Ekekang and G. Balansard, Quinovic acid glycosides from Nauclea diderrichii, Planta Med 61: 280 (1995)PubMedCrossRefGoogle Scholar
  19. 19.
    A.M. Yepez, O. Lock de Ugaz, C.M. Alvarez, V. De Feo, R. Aquino, F. De Simone and C. Pizza, Quinovic acid glycosides from Uncaria guianensis, Phytochemistry 30: 1635 (1991)PubMedCrossRefGoogle Scholar
  20. 20.
    M.E.O. Matos, M.P. Sousa, M.I.L. Machado and R. Braz Filho, Quinovic acid glycosides from Guettarda angelica, Phytochemistry 25: 1419 (1986)CrossRefGoogle Scholar
  21. 21.
    R. Aquino, F. De Simone, C. Pizza, R. Cerri and D. F. De Mello, Quinovic acid glycosides from Guettarda platypoda, Phytochemistry 27: 2927 (1988)CrossRefGoogle Scholar
  22. 22.
    K. Hostettmann, Saponins with molluscicidal activity from Hedera helix L. Heiv. Chico. Acta 63: 606 (1980)CrossRefGoogle Scholar
  23. 23.
    R. Aquino, F. De Simone and C. Pizza, New quinovic acid glycosides from Uncaria tomentosa (de Wild) D.C., J. Nat. Prod. 51: 257 (1988)CrossRefGoogle Scholar
  24. 24.
    R. Aquino, V… De Feo, F. De Simone and C. Pizza, Plant metabolites: structure and in vitro antiviral activity of quinovic acid glycosides from Uncaria tomentosa and Guettarda platypoda, J. Nat. Prod. 52: 679 (1989)PubMedCrossRefGoogle Scholar
  25. 25.
    R. Aquino, V. De Feo, F. De Simone, C. Pizza and G. Cerino, Plant metabolites: new compounds and antiinflammatory activity of Uncaria tomentosa, J. Nat. Prod. 54: 453 (1989)CrossRefGoogle Scholar
  26. 26.
    R. Aquino, F. De Simone, C Pizza and J. F. De Mello, Further quinovic acid from Guettarda platypoda, Phytochemistry 28: 199 (1989)CrossRefGoogle Scholar
  27. 27.
    M. Lamidi, T. Martin-Lopez, E. 011ivier, F. Crespin-Maillard, L. Nze-Ekekang andGoogle Scholar
  28. G. Balansard, Separation of saponins and determination of quinovic acid 3-O-a-Lrhamnopyranoside from Nauclea diderrichii (de Wild) Merr. bark by high performance liquid chromatography Chromatographia 41: 581 (1995)Google Scholar
  29. 28.
    M. Lamidi, E. 011ivier, R. Faure, L. Debrauwer, L. Nze-Ekekang and G.Google Scholar
  30. Balansard, 3a, 5a-tetrahydrodesoxycordifoline from Nauclea diderrichii, Pharma. Pharmacol. Lett. 5: 8 (1995)Google Scholar
  31. 29.
    W. Trager and J.B. Jensen, Cultivation of malaria parasite, Nature (London) 273: 621 (1978)CrossRefGoogle Scholar
  32. 30.
    W. Trager and J. Polonski, Antimalarial activity of quassinoids against chloroquineresistant Plasmodium falciparum in vitro, Am. J. Trop. Med. Hyg. 30: 531 (1981)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Maroufath Lamidi
    • 1
    • 2
    • 3
  • Evelyne Ollivier
    • 1
  • Monique Gasquet
    • 2
  • Robert Faure
    • 4
  • Lucienne Nzé-Ekekang
    • 3
  • Guy Balansard
    • 1
  1. 1.Laboratory of PharmacognosyMarseille Cedex 5France
  2. 2.Laboratory of ParasitologyFaculty of PharmacyMarseille Cedex 5France
  3. 3.Iphametra (Cenarest)LibrevilleGabon
  4. 4.URA 1411University Aix-Marseille IIIMarseille Cedex 13France

Personalised recommendations