Steroidal Glycoalkaloids: Nature and Consequences of Bioactivity

  • James G. Roddick
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 404)


Of the many compounds that make up the secondary compound profile of plants, the steroidal glycoalkaloids figure amongst the more interesting not only for chemical and biological reasons, but also because they have exerted an important influence on various aspects of human activity and behaviour. Glycoalkaloids are present in more than 350 plant species mainly of the family Solanaceae (and to a lesser extent the Liliaceae). In excess of 75 naturally occurring aglycone structures (alkamines) are known which are based on a C27 cholestane skeleton with additional nitrogen-containing rings or groups that impart basicity and some of the biological activity. In addition, a significant portion of the biological activity of glycoalkaloids derives from an oligosaccharide moiety (comprising up to five monosaccharides and usually C 3 attached) which renders the molecule amphipathic. Some important structures referred to in the text are shown in Figure 1. The chemistry and taxonomic distribution of glycoalkaloids has been comprehensively reviewed by Schreibers1 and Ripperger and Schreiber2, and other aspects by various authors3–11. Thus, although usually referred to as glycoalkaloids, many of these compounds also possess characteristics of plant monodesmosidic saponins. Many glycoalkaloids exhibit two main types of biological activity which very much reflect this ‘dual’ chemical nature, viz. antiacetylcholinesterase activity reminiscent of some alkaloids, and membrane-lytic properties similar to those of saponins.


Colorado Potato Beetle Solanum Species Fusarium Solani Leptinotarsa Decemlineata Glycoalkaloid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Schreiber, Steroid alkaloids: the Solanum group, in: The Alkaloids. Chemistry and Physiology, R.H.F. Manske, Ed., Academic Press, New York (1968).Google Scholar
  2. 2.
    H. Ripperger and K. Schreiber, Solanum steroid alkaloids, in: The Alkaloids. Chemistry and Physiology, R.H.F. Manske and R.G.A. Rodrigo, Eds., Academic Press, New York (1981).Google Scholar
  3. 3.
    J.G. Roddick, The steroidal glycoalkaloid a-tomatine, Phytochemistry 13: 9 (1974).CrossRefGoogle Scholar
  4. 4.
    Si. Jadhav, R.P. Sharma and D.K. Salunkhe, Naturally occurring toxic alkaloids in foods, Crit. Rev. Toxicol. 9: 21 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    S.F. Osman, Glycoalkaloids in potatoes, Food Chem. 11: 235 (1983).CrossRefGoogle Scholar
  6. 6.
    S.C. Morris and T.H. Lee, Toxicity and teratogenicity of Solanaceae glycoalkaloids particularly those of the potato (Solanum tuberosum): a review, Food Technol. Australia, 36: 118 (1984).Google Scholar
  7. 7.
    J.G. Roddick, Steroidal alkaloids of the Solanaceae, in: Solanaceae: Biology and Systematics, W.G. D’Arcy, Ed., Columbia University Press, New York (1986).Google Scholar
  8. 8.
    J.G. Roddick, Antifungal activity of plant steroids, in: Ecology and Metabolism of Plant Lipids, G. Fuller and W.D. Nes, Eds., American Chemical Society, Washington, DC (1987).Google Scholar
  9. 9.
    W.M.J. Van Gelder, Steroidal glycoalkaloids in Solanum: consequences for potato breeding and food safety, in: Toxicology of Plant and Fungal Compounds, R.F. Keeler and A.T. Tu, Eds., Marcel Dekker Inc., New York (1991).Google Scholar
  10. 10.
    W.M.J. Van Gelder, Chemistry, toxicology and occurrence of steroidal glycoalkaloids: potential contaminants of the potato (Solanum tuberosum L.), in: Poisonous Plant Contamination of Edible Plants, A-F.M. Rizk, Ed., CRC Press, Boca Raton (1990).Google Scholar
  11. 11.
    J.A. Maga, Glycoalkaloids in Solanaceae, Food Rev. Int. 10: 385 (1994).CrossRefGoogle Scholar
  12. 12.
    P. Slanina, Solanine (glycoallcaloids) in potatoes: toxicological evaluation, Food Chem. Toxic. 11: 759 (1990).CrossRefGoogle Scholar
  13. 13.
    G. Schulz and H. Sander, Ober Cholesterin-Tomatid. Eine neue Molektilverbindung zur Analyse und präparativen Gewinnung von Steroiden, Z. Physiol. Chem. 308: 122 (1957).CrossRefGoogle Scholar
  14. M. Toyoda, W.D. Rausch, K. Inoue, Y. Ohno, Y. Fujiyama, K. Takagi and Y. Saito, Comparison of solanaceous glycoalkaloids-evoked Ca2+ influx in different types of cultured cells, Toxic. in Vitro 5: 347 (1991).Google Scholar
  15. 15.
    J.G. Roddick and R.B. Drysdale, Destabilization of liposome membranes by the steroidal glycoalkaloid a-tomatine, Phytochemistry 23: 543 (1984).CrossRefGoogle Scholar
  16. 16.
    P.A. Arneson and R.D. Durbin, Studies on the mode of action of tomatine as a fungitoxic agent, Plant Physiol. 43: 683 (1968).PubMedCrossRefGoogle Scholar
  17. 17.
    C.C. Steel and R.B. Drysdale, Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by a-tomatine, Phytochemistry 27: 1025 (1988).CrossRefGoogle Scholar
  18. 18.
    P.M. Elias, D.S. Friend and J. Goerke, Membrane sterol heterogeneity. Freeze-fracture detection with saponins and filipin, J. Histochem. Cytochem. 27: 1247 (1979).PubMedCrossRefGoogle Scholar
  19. 19.
    C. Andersson Forsman, Freeze-fracture cytochemistry of sympathetic ganglia. Distribution of filipin and tomatin induced membrane deformations in neurons and satellite cells, Histochemistry 82: 209 (1985).CrossRefGoogle Scholar
  20. 20.
    E.A.J. Keukens, T. De Vrije, C.H.J.P. Fabrie, R.A. Demel, W.M.F. Jongen and B. de Kruijff, Dual specificity of sterol-mediated glycoalkaloid induced membrane disruption, Biochim. Biophys. Acta 1110: 127 (1992).PubMedCrossRefGoogle Scholar
  21. 21.
    W.H. Orgell, K.A. Vaidya and P.A. Dahm, Inhibition of human plasma cholinesterase in vitro by extracts of solanaceous plants, Science 128: 1136 (1958).PubMedCrossRefGoogle Scholar
  22. 22.
    W.H. Orgeli, Inhibition of human plasma cholinesterase in vitro by alkaloids, glycosides, and other natural substances, Lloydia 26: 36 (1963).Google Scholar
  23. 23.
    S.O. Alozie, R.P. Sharma and D.K. Salunkhe, Inhibition of rat cholinesterase isoenzymes in vitro and in vivo by the potato alkaloid, a-chaconine, J. Food Biochem. 2: 259 (1978).CrossRefGoogle Scholar
  24. 24.
    R.J. Bushway, SA. Savage and B.S. Ferguson, Inhibition of acetyl cholinesterase by solanaceous glycoalkaloids and alkaloids, Am. Potato J. 64; 409 (1987).CrossRefGoogle Scholar
  25. 25.
    J.G. Roddick, The acetylcholinesterase-inhibitory activity of steroidal glycoalkaloiods and their aglycones, Phytochemistry 28: 2631 (1989).CrossRefGoogle Scholar
  26. 26.
    W.H. Orgell and E.T. Hibbs, Cholinesterase inhibition in vitro by potato foliage extracts, Am. Potato J. 40: 403 (1963).CrossRefGoogle Scholar
  27. 27.
    M. McMillan and J.C. Thompson, An outbreak of suspected solanine poisoning in schoolboys: examination of criteria of solanine poisoning, Quart. J. Med. 48: 227 (1979).PubMedGoogle Scholar
  28. 28.
    M.R.A. Morgan and D.T. Coxon, Tolerances: glycoalkaloids in potatoes, in: Natural Toxicants in Food: Progress and Prospects, D.H. Watson, Ed., VCH Publishers, New York (1987).Google Scholar
  29. 29.
    D.C. Baker, R.F. Keeler and W. Gaffield, Toxicosis from steroidal alkaloids of Solanum species, in: Toxicology of Plant and Fungal Compounds, R.F. Keeler and A.T. Tu, Eds., Marcel Dekker Inc., New York (1991).Google Scholar
  30. 30.
    G. Kusano, A. Takahashi, S. Nozoe, Y. Sonoda and Y. Sato, Solanum alkaloids as inhibitors of enzymatic conversion of dihydrolanosterol into cholesterol, Chem. Pharm. Bull. 35: 4321 (1987).PubMedCrossRefGoogle Scholar
  31. 31.
    J. Kuc, Steroid glycoalkaloids and related compounds as potato quality factors, Am. Potato J. 61: 123 (1984).CrossRefGoogle Scholar
  32. 32.
    J.G. Roddick, Effect of a-tomatine on the integrity and biochemical activities of isolated plant cell organelles, J. Exp. Bot. 29: 1371 (1978).CrossRefGoogle Scholar
  33. 33.
    M.R. Rezk and L. Ferenczy, Growth inhibiting activity of some steroid glycoalkaloids on higher plants, Acta Biol. Szeged 15: 71 (1969).Google Scholar
  34. 34.
    M. Ghazi and G.A. Myers, The action of steroidal alkaloids on the ground meristem tissue of the root axis of lettuce seedlings, Environ. Exp. Bot. 30: 235 (1990).CrossRefGoogle Scholar
  35. 35.
    K. Fukuhara and I. Kubo, Isolation of steroidal glycoalkaloids from Solanum incanum by two countercurrent chromatographic methods, Phytochemistry 30: 685 (1991).PubMedCrossRefGoogle Scholar
  36. 36.
    W.M. Tingey, Glycoalkaloids as pest resistance factors, Am. Potato J. 61: 157 (1984).CrossRefGoogle Scholar
  37. 37.
    K. Schreiber, Natürliche pflanzliche Resistenzstoffe gegen den Kartoffelkäfer and ihr möglicher Wirkungsmechanismus, Züchter 27: 289 (1957).Google Scholar
  38. 38.
    B. Stürckow and I. Löw, Die Wirkung einiger Solanum-Alkaloidglykoside auf den Kartoffelkäfer Leptinotarsa decemlineata, Say. Entomol. Exp. Appl. 4: 133 (1961).CrossRefGoogle Scholar
  39. 39.
    S.L. Sinden, L.L. Sanford and S.F. Osman, Glycoalkaloids and resistance to the Colorado potato beetle in Solanum chacoense Bitter, Am. Potato J. 57: 331 (1980).CrossRefGoogle Scholar
  40. 40.
    K.L. Deahl, W.W. Cantelo, S.L. Sinden and L.L. Sanford, The effect of light intensity on Colorado potato beetle resistance and foliar glycoalkaloid concentration of four Solanum chacoense clones, Am. Potato J. 68: 659 (1991).CrossRefGoogle Scholar
  41. 41.
    S.L. Sinden, W.W. Cantelo, L.L. Sanford and K.L. Deahl, Allelochemically mediated host resistance to the Colorado potato beetle, Leptinotarsa decemlineata (Say.) (Coleoptera: Chrysomelidae), Mem. Ent. Soc. Can. 159: 19 (1991).Google Scholar
  42. 42.
    M.B. Dimock, S.L. LaPointe and W.M. Tingey, Solanum neocardenasii: a new source of potato resistance to the Colorado potato beetle, J. Econ. Entomol. 79: 1269 (1986).Google Scholar
  43. 43.
    J.D. Barbour and G.G. Kennedy, Role of steroidal glycoalkaloid a-tomatine in host-plant resistance of tomato to the Colorado potato beetle, J. Chem Ecol. 17: 989 (1991).CrossRefGoogle Scholar
  44. 44.
    W.M. Tingey, J.D. Mackenzie and P. Gregory, Total foliar glycoalkaloids and resistance of wild potato species to Empoasca fabae (Harris), Am. Potato J. 55: 577 (1978).CrossRefGoogle Scholar
  45. 45.
    K.V. Raman, W.M. Tingey and P. Gregory, Potato glycoalkaloids: effect on survival and feeding behaviour of the potato leafhopper, J. Econ. Entomol. 72: 337 (1979).Google Scholar
  46. 46.
    L.L. Sanford, K.L. Deahl, S.L. Sinden and T.L. Ladd, Jr., Foliar solanidine glycoside levels in Solanum tuberosum populations selected for potato leafhopper resistance, Am. Potato J. 67: 461 (1990).CrossRefGoogle Scholar
  47. 47.
    L.L. Sanford, K.L. Deahl, S.L. Sinden and T.L. Ladd, Jr., Glycoalkaloid contents in tubers from Solanum tuberosum populations selected for potato leafhopper resistance, Am. Potato J. 69: 693 (1992).CrossRefGoogle Scholar
  48. 48.
    K.A. Bloem, K.C. Kelley and S.S. Duffey, Differential effect of tomatine and its alleviation by cholesterol on larval growth and efficiency of food utilization in Heliothis zea and Spodoptera exigua, J. Chem. Ecol. 15: 387 (1989).CrossRefGoogle Scholar
  49. 49.
    J.D. Hare, Growth of Leptinotarsa decemlineata larvae in response to simultaneous variation in protein and glycoalkaloid concentration, J. Chem. Ecol. 13: 39 (1987).CrossRefGoogle Scholar
  50. 50.
    B.C. Campbell and S.S. Duffey, Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control, Science 205: 700 (1979).PubMedCrossRefGoogle Scholar
  51. 51.
    F. Gallardo, D.J. Boethel, J.R. Fuxa and A. Richter, Susceptibility of Heliothis zea (Boddie) larvae to Nomoraea rileyi (Farlow) Samson. Effects of a-tomatine at the third trophic level, J. Chem. Ecol. 16: 1751 (1990).CrossRefGoogle Scholar
  52. 52.
    P. Schwarze, Methoden zum Solaninnachweis und zur Solaninbestimmung in Kartoffelzuchtmaterial, Züchter 32: 155 (1962).Google Scholar
  53. 53.
    K.-E. Hellenäs, C. Branzell, H. Johnsson and P. Slanina, High levels of glycoalkaloids in the established Swedish potato variety Magnum Bonum, J. Sci. Food Agric. 68: 249 (1995).CrossRefGoogle Scholar
  54. 54.
    K. Takagi, M. Toyoda, Y. Fujiyama and Y. Saito, Effect of cooking on the contents of a-chaconine and a-solanine in potatoes, J. Food Hyg. Soc. Jap. 31: 67 (1990).CrossRefGoogle Scholar
  55. 55.
    R.J. Bushway, J.L. Bureau and D.F. McGann, Alpha-chaconne and alpha-solanine content of potato peels and potato peel products, J. Food Sci. 48: 84 (1983).CrossRefGoogle Scholar
  56. 56.
    S.L. Sinden, K.L. Deahl and B.B. Aulenbach, Effect of glycoalkaloids and phenolics on potato flavor, J. Food Sci. 41: 520 (1976).CrossRefGoogle Scholar
  57. 57.
    J. Hopkins, The glycoalkaloids: naturally of interest (but a hot potato), Food Chem. Toxicol. 33: 323 (1995).PubMedCrossRefGoogle Scholar
  58. 58.
    K.-E. Hellenäs, A. Nyman, P. Slanina, L. Loöf and J. Gabrielson, Determination of potato glycoalkaloids and their aglycone in blood serum by HPLC, J. Chromatog. 573: 69 (1992).Google Scholar
  59. 59.
    A. Bömer and H. Mattis, Der Solaningehalt der Kartoffeln, Z. Unters. Nahrungs- Genußmittel, 47: 97 (1924).CrossRefGoogle Scholar
  60. 60.
    A. Parnell, V.S. Bhuva and E.J.B. Bintcliffe, The glycoalkaloid content of potato varieties, J. Natn. Inst. Agric. Bot. 16: 535 (1984).Google Scholar
  61. 61.
    J. Cheng, J.A. Saunders and S.L. Sinden, Colorado potato beetle resistant somatic hybrid potato plants produced via protoplast electrofusion, In Vitro Cell Dey. Biol. 31: 90 (1995).Google Scholar
  62. 62.
    A. Marston and K. Hostettmann, Plant molluscicides, Phytochemistry 24: 639 (1985).CrossRefGoogle Scholar
  63. 63.
    S.M. Kupchan, S.J. Barboutis, J.R. Knox and C.A. Lau Cam, Beta-solamarine: tumor inhibitor isolated from Solanum dulcamara, Science 150: 1827 (1965).PubMedCrossRefGoogle Scholar
  64. 64.
    S. Singh, N.M. Khanna and M.M. Dhar, Solaplumbin, a new anticancer glycoside from Nicotiana plumbaginifolia, Phytochemistry 13: 2020 (1974).CrossRefGoogle Scholar
  65. 65.
    B.E. Cham, M. Gilliver and L. Wilson, Antitumour effects of glycoalkaloids isolated from Solanum sodomaeum, Planta Med. 53: 34 (1987).PubMedCrossRefGoogle Scholar
  66. 66.
    B.E. Cham, B. Daunter and R.A. Evans, Topical treatment of malignant and premalignant skin lesions by very low concentrations of a standard mixture (BEC) of solasodine glycosides, Cancer Lett. 59: 183 (1991).PubMedCrossRefGoogle Scholar
  67. 67.
    B.E. Cham and B. Daunter, Solasodine glycosides. Selective cytotoxicity for cancer cells and inhibition of cytotoxicity by rhamnose in mice with sarcoma 180, Cancer Lett. 55: 221 (1990).PubMedCrossRefGoogle Scholar
  68. 68.
    B.E. Cham, Solasodine glycosides as anti-cancer agents: pre-clinical and clinical studies, Asia Pacific J. Pharmacol. 9: 113 (1994).Google Scholar
  69. 69.
    B. Daunter and B.E. Cham, Solasodine glycosides: in vitro preferential cytotoxicity for human cancer cells, Cancer Lett. 55: 209 (1990).PubMedCrossRefGoogle Scholar
  70. 70.
    J.G. Roddick and A.L. Rijnenberg, Synergistic interaction between the potato glycoalkaloids a-solanine and a-chaconine in relation to lysis of phospholipid/sterol liposomes, Phytochemistry 26: 1325 (1987).CrossRefGoogle Scholar
  71. 71.
    J.G. Roddick, A.L. Rijnenberg and S.F. Osman, Synergistic interaction between the potato glycoalkaloids a-solanine and a-chaconine in relation to destabilization of cell membranes: ecological implications, J.Chem. Ecol. 14: 889 (1988).CrossRefGoogle Scholar
  72. 72.
    A.M. Fewell and J.G. Roddick, Interactive antifungal activity of the glycoalkaloids a-solanine and «chaconne, Phytochemistry 33: 323 (1993).CrossRefGoogle Scholar
  73. 73.
    J.G. Roddick, A.L. Rijnenberg and M. Weissenberg, Membrane-disrupting properties of the steroidal glycoalkaloids solasonine and solamargine, Phytochemistry 29: 1513 (1990).CrossRefGoogle Scholar
  74. 74.
    A.M. Fewell, J.G. Roddick and M. Weissenberg, Interactions between the glycoalkaloids solasonine and solamargine in relation to inhibition of fungal growth, Phytochemistry 37: 1007 (1994).PubMedCrossRefGoogle Scholar
  75. 75.
    S.L. Sinden and L.L. Sanford, Origin and inheritance of solamarine glycoalkaloids in commercial potato cultivars, Am. Potato J. 58: 305 (1981).CrossRefGoogle Scholar
  76. 76.
    J.G. Roddick, A.L. Rijnenberg and M. Weissenberg, Alterations to the permeability of liposome membranes by the solasodine-based glycoalkaloids solasonine and solamargine, Phytochemistry 31: 1951 (1992).CrossRefGoogle Scholar
  77. 77.
    S.L. Sinden, R.W. Goth and M.J. O’Brien, Effect of potato alkaloids on the growth of Alternaria solani and their possible role as resistance factors, Phytopathology 63: 303 (1973).CrossRefGoogle Scholar
  78. 78.
    R.F. Keeler, D.C. Baker and W. Gaffield, Spirosolane-containing Solanum species and induction of congenital craniofacial malformations, Toxicon 28: 873 (1990).PubMedCrossRefGoogle Scholar
  79. 79.
    L.L. Sanford, K.L. Deahl and S.L. Sinden, Glycoalkaloid content in foliage of hybrid and backcross populations from a Solanum tuberosum x S. chacoense cross, Am. Potato J. 71: 225 (1994).CrossRefGoogle Scholar
  80. 80.
    G.C. Percival, J.A.C. Harrison and G.R. Dixon, The influence of temperature on light enhanced glycoalkaloid synthesis in potato, Ann. Appl. Biol. 123: 141 (1993).CrossRefGoogle Scholar
  81. 81.
    M. Friedman and L. Dao, Distribution of glycoalkaloids in potato plants and commercial potato products, Agric. Food Chem. 40: 419 (1990).CrossRefGoogle Scholar
  82. 82.
    D.P. Bell, J.G. Gibson, A.M. McCarroll and G.A. McClean, Embryotoxicity of solanine and aspirin in mice, J. Reprod. Fert. 46: 257 (1976).CrossRefGoogle Scholar
  83. 83.
    S. Chaube and C.A. Swinyard, Teratological and toxicological studies of alkaloidal and phenolic compounds from Solanum tuberosum L., Toxicol. Appl. Pharmacol. 36: 227 (1976).PubMedCrossRefGoogle Scholar
  84. 84.
    K. Nishie, M.R. Gumbmann and A.C. Keyl, Pharmacology of solanine, Toxicol. Appl. Pharmacol. 19: 81 (1971).PubMedCrossRefGoogle Scholar
  85. 85.
    K. Nishie, W.P. Norred and A.P. Swain, Pharmacology and toxicology of chaconine and tomatine, Res. Comm. Chem. Pathol. Pharmacol. 12: 657 (1975).Google Scholar
  86. 86.
    C.A. Swinyard and S. Chaube, Are potatoes teratogenic for experimental animals? Teratology 8: 349 (1973).PubMedCrossRefGoogle Scholar
  87. 87.
    U. Kanwar, A. Batts, S.N. Sanyal and A. Ranga, Glycolytic enzyme activities of human and bovine spermatozoa treated in vitro with solasodine, J. Ethnopharmacol. 28: 49 (1990).CrossRefGoogle Scholar
  88. 88.
    R.F. Keeler, D.C. Baker and W. Gaffield, Teratogenic Solanum species and responsible teratogens, in: Toxicology of Plant and Fungal Compounds, R.F. Keeler and A.T. Tu, Eds., Marcel Dekker Inc., New York (1991).Google Scholar
  89. 89.
    M. Friedman, J.R. Rayburn and J.A. Bantle, Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay - Xenopus (FETAX). Food Chem. Toxicol. 29: 537 (1991).PubMedCrossRefGoogle Scholar
  90. 90.
    R.H. Wilson, G.W. Poley and F. DeEds, Some pharmacologic and toxicologic properties of tomatine and its derivatives, Toxicol. Appl. Pharmacol. 3: 39 (1961).PubMedCrossRefGoogle Scholar
  91. 91.
    C.N. Aldous, R.P. Sharma and D.K. Salunkhe, Effects of a-chaconine on brain amines, electroencephalogram, cardiac rates and respiratory response in rats, J. Food Safety 2: 20 (1980).CrossRefGoogle Scholar
  92. 92.
    K. Nishie, T.J. Fitzpatrick, A.P. Swain and A.C. Keyl, Positive inotropic action of Solanaceae glycoalkaloids, Res. Comm. Chem. Pathol. Pharmacol. 15: 601 (1976).Google Scholar
  93. 93.
    B.C. Patil, R.P. Sharma, D.K. Salunkhe and K. Salunkhe, Evaluation of solanine toxicity, Food Cosmet. Toxicol. 10: 395 (1972).PubMedCrossRefGoogle Scholar
  94. 94.
    T. Satoh, Glycemic effects of solanine in rats, Jap. J. Pharmacol. 17: 652 (1967).CrossRefGoogle Scholar
  95. 95.
    R.P. Sharma, C.C. Willhite, J.L. Shupe and D.K. Salunkhe, Acute toxicity and histopathological effects of certain glycoalkaloids and extracts of Alternaria solani or Phytophthora infestans in mice, Toxicol. Lett. 3: 349 (1979).CrossRefGoogle Scholar
  96. 96.
    D.C. Baker, R.F. Keeler and W. Gaffield, Pathology in hamsters administered Solanum plant species that contain steroidal alkaloids, Toxicon 27: 1331 (1989).PubMedCrossRefGoogle Scholar
  97. 97.
    M. Friedman, Composition and safety evaluation of potato berries, potato and tomato seeds, potatoes, and potato alkaloids, in: Food Safety Assessment, J.W. Finley, S.F. Robinson and D.J. Armstrong, Eds., American Chemical Society, Washington, DC (1992).Google Scholar
  98. 98.
    F.W. Harris and T. Cockburn, Alleged poisoning by potatoes, Am. J. Pharm. 90: 722 (1918).Google Scholar
  99. 99.
    A.A. Hansen, Two fatal cases of potato poisoning, Science 61: 340 (1925).PubMedCrossRefGoogle Scholar
  100. 100.
    S.G. Willimot, An investigation of solanine poisoning, Analyst 58: 431 (1933).CrossRefGoogle Scholar
  101. 101.
    G.S. Wilson, A small outbreak of solanine poisoning, Monthly Bull. Min. Health Pub. Health Lab. Serv. 18: 207 (1959).Google Scholar
  102. 102.
    E. Pfuhl, Über eine Massenerkrankung durch Vergiftung mit stark solaninhaltigen Kartoffeln, Deutsch. Med. Wochenschr. 25: 753 (1899).CrossRefGoogle Scholar
  103. 103.
    L.A. Reelah and A. Keem, A case of mass poisoning by solanine, Soy. Med. 22: 129 (1958).Google Scholar
  104. 104.
    G. Défago and H. Kern, Induction of Fusarium solani mutants insensitive to tomatine, their pathogenicity and aggressiveness to tomato fruits and pea plants, Physiol. Plant Path. 22: 29 (1983).Google Scholar
  105. 105.
    G. Défago, H. Kern and L. Sedlar, Genetic analysis of tomatine insensitivity, sterol content and pathogenicity for green tomato fruits in mutants of Fusarium solani, Physiol. Plant Path. 22: 39 (1983).Google Scholar
  106. 106.
    J.G. Roddick and A.L. Rijnenberg, Effect of steroidal glycoalkaloids of the potato on the permeability of liposome membranes, Physiol. Plant. 68: 436 (1986).CrossRefGoogle Scholar
  107. 107.
    E. Schlösser, Role of saponins in antifungal resistance. III Tomatin dependent development of fruit rot organisms on tomato fruits. Z. Pflanzenkr. Pflanzensch. 82: 476 (1975).Google Scholar
  108. 108.
    S.L. Sinden, L.L. Sanford, W.W. Cantelo and K.L. Deahl, Leptine glycoalkaloids and resistance of the Colorado potato beetle (Coleoptera: Chrysomelidae) in Solanum chacoense, Environ. Entomol. 15: 1057 (1986).Google Scholar
  109. 109.
    H.T. Chan, Jr. and S.Y.T. Tam, Toxicity of a-tomatine to larvae of the Mediterranean fruit fly (Diptera: Tephriditae), J. Econ. Entomol. 78: 305 (1985).Google Scholar
  110. 110.
    S.D. Eigenbrode and J.T. Trumble, Fruit-based tolerance to damage by beet armyworm (Lepidoptera: Noctuidae) in tomato, Pop. Ecol. 23: 937 (1994).Google Scholar
  111. 111.
    C. Hirano, K. Yasumi, E. Itoh, C.-S. Kim and M. Horiike, A feeding deterrent for Thrips palmi Kamy (Thysanoptera: Thripidae) found in tomato leaves: isolation and identification, Jap. J. Appl. Entomol. Zool. 38: 109 (1994).CrossRefGoogle Scholar
  112. 112.
    J.A. Juvik and M.A. Stevens, Physiological mechanisms of host-plant resistance in the genus Lycopersicon to Heliothis zea and Spodoptera exigua, two insect pests of the cultivated tomato, J. Am. Soc. Hort. Sci. 107: 1065 (1982).Google Scholar
  113. 113.
    T. Jonasson and K. Olsson, The influence of glycoalkaloids, chlorogenic acid and sugars on the susceptibility of potato tubers to wireworm, Potato Res. 37: 205 (1994).CrossRefGoogle Scholar
  114. 114.
    K. Olsson and T. Jonasson, Genotypic differences in susceptibility to wireworm attack in potato: mechanisms and implications for plant breeding, Plant Breed. 114: 66 (1995).CrossRefGoogle Scholar
  115. 115.
    R. Paquin, Study of the role of the glycoallcaloids in the resistance of potato to bacterial ring rot, Am. Potato J. 43: 349 (1966).CrossRefGoogle Scholar
  116. 116.
    J.A. Frank, J.M. Wilson and R.E. Webb, The relationship between glycoalkaloids and disease resistance in potatoes, Phytopathology 65: 1045 (1975).CrossRefGoogle Scholar
  117. 117.
    R.K. McKee, Factors affecting the toxicity of solanine and related alkaloids to Fusarium caeruleum, J. Gen. Microbiol. 20: 686 (1959).PubMedCrossRefGoogle Scholar
  118. 118.
    D.L. Corsini and JJ. Pavek, Phenylalanine ammonia lyase activity and fungitoxic metabolites produced by potato cultivars in response to Fusarium tuber rot, Physiol. Plant Path. 16: 63 (1980).CrossRefGoogle Scholar
  119. 119.
    P. Langcake, R.B. Drysdale and H. Smith, Post-infectional production of an inhibitor of Fusarium oxysporum f. lycopersici by tomato plants, Physiol. Plant Path. 2: 17 (1972).CrossRefGoogle Scholar
  120. 120.
    C.A. Smith and W.E. MacHardy, The significance of tomatine in the host response of susceptible and resistant tomato isolines infected with two races of Fusarium oxysporum f. sp. lycopersici, Phytopathology 72: 415 (1982).CrossRefGoogle Scholar
  121. 121.
    K. Olsson, The influence of glycoalkaloids and impact damage on resistance to Fusarium solani var. coeruleum and Phoma exigua var. foveata in potato tubers, J. Phytopathol. 118: 347 (1987).CrossRefGoogle Scholar
  122. 122.
    K.L. Deahl, R.I. Young and S.L. Sinden, A study of the relationship of late blight resistance to glycoalkaloid content in fifteen potato clones, Am. Potato J. 50: 248 (1973).CrossRefGoogle Scholar
  123. 123.
    L.S. Morrow and F.L. Caruso Effect of potato seed tuber glycoalkaloid content on subsequent infection by Rhizoctonia solani, Am. Potato J. 60: 403 (1983).CrossRefGoogle Scholar
  124. 124.
    G.F. Pegg and S. Woodward, Synthesis and metabolism of a-tomatine in tomato isolines in relation to resistance to Verticillium albo-atrum, Physiol. Mol. Plant Path. 28: 187 (1986).CrossRefGoogle Scholar
  125. 125.
    J.M.S. Forrest and D.T. Coxon, The relationship between glycoalkaloids and resistance to the white potato cyst nematode, Globodera pallida in potato clones derived from Solanum verni, Ann. Appl. Biol. 94: 265 (1980).CrossRefGoogle Scholar
  126. 126.
    V. Grassert and H. Lellbach, Untersuchungen des Glykoalkaloidgehalts von Kartoffelhybriden mit Resistenz gegen die Kartoffelnematoden Globodera rostochiensis und Globodera pallida, Biochem. Physiol. Pflanzen 182: 473 (1987).Google Scholar
  127. 127.
    C.A. Elliger, A.C. Waiss, Jr., H.L. Dutton and M.F. Rose, a-Tomatine and resistance of tomato cultivars towards the nematode Meloidogyne incognita, J. Chem. Ecol. 14: 1253 (1988).CrossRefGoogle Scholar
  128. 128.
    K.A. Johnston and R.S. Pearce, Biochemical and bioassay analysis of resistance of potato (Solanum tuberosum L.) cultivars to attack by the slug Deroceras reticulatum (Muller), Ann. Appl. Biol. 124: 109 (1994).CrossRefGoogle Scholar
  129. 129.
    W.M.J. Van Gelder and O.M.B. De Ponti, a-Tomatine and other steroidal glycoalkaloids in fruits of tomato lines resistant to the glasshouse whitefly (Trialeurodes vaporariorum Westw.), Euphytica 36: 555 (1987).Google Scholar
  130. 130.
    W.M. Tingey and S.L. Sinden, Glandular pubescence, glycoalkaloid composition, and resistance to the green peach aphid, potato leafhopper, and potato fleabeetle in Solanum berthaultii, Am. Potato J. 59: 95 (1982).CrossRefGoogle Scholar
  131. 131.
    K.L. Flanders, J.G. Hawkes, E.B. Radcliffe and F.I. Lauer, Insect resistance in potatoes: sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations, Euphytica 61: 83 (1992).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • James G. Roddick
    • 1
  1. 1.Department of Biological SciencesUniversity of ExeterExeterUK

Personalised recommendations