Skip to main content

Steroidal Glycoalkaloids: Nature and Consequences of Bioactivity

  • Chapter
Saponins Used in Traditional and Modern Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 404))

Abstract

Of the many compounds that make up the secondary compound profile of plants, the steroidal glycoalkaloids figure amongst the more interesting not only for chemical and biological reasons, but also because they have exerted an important influence on various aspects of human activity and behaviour. Glycoalkaloids are present in more than 350 plant species mainly of the family Solanaceae (and to a lesser extent the Liliaceae). In excess of 75 naturally occurring aglycone structures (alkamines) are known which are based on a C27 cholestane skeleton with additional nitrogen-containing rings or groups that impart basicity and some of the biological activity. In addition, a significant portion of the biological activity of glycoalkaloids derives from an oligosaccharide moiety (comprising up to five monosaccharides and usually C 3 attached) which renders the molecule amphipathic. Some important structures referred to in the text are shown in Figure 1. The chemistry and taxonomic distribution of glycoalkaloids has been comprehensively reviewed by Schreibers1 and Ripperger and Schreiber2, and other aspects by various authors3–11. Thus, although usually referred to as glycoalkaloids, many of these compounds also possess characteristics of plant monodesmosidic saponins. Many glycoalkaloids exhibit two main types of biological activity which very much reflect this ‘dual’ chemical nature, viz. antiacetylcholinesterase activity reminiscent of some alkaloids, and membrane-lytic properties similar to those of saponins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Schreiber, Steroid alkaloids: the Solanum group, in: The Alkaloids. Chemistry and Physiology, R.H.F. Manske, Ed., Academic Press, New York (1968).

    Google Scholar 

  2. H. Ripperger and K. Schreiber, Solanum steroid alkaloids, in: The Alkaloids. Chemistry and Physiology, R.H.F. Manske and R.G.A. Rodrigo, Eds., Academic Press, New York (1981).

    Google Scholar 

  3. J.G. Roddick, The steroidal glycoalkaloid a-tomatine, Phytochemistry 13: 9 (1974).

    Article  CAS  Google Scholar 

  4. Si. Jadhav, R.P. Sharma and D.K. Salunkhe, Naturally occurring toxic alkaloids in foods, Crit. Rev. Toxicol. 9: 21 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. S.F. Osman, Glycoalkaloids in potatoes, Food Chem. 11: 235 (1983).

    Article  CAS  Google Scholar 

  6. S.C. Morris and T.H. Lee, Toxicity and teratogenicity of Solanaceae glycoalkaloids particularly those of the potato (Solanum tuberosum): a review, Food Technol. Australia, 36: 118 (1984).

    CAS  Google Scholar 

  7. J.G. Roddick, Steroidal alkaloids of the Solanaceae, in: Solanaceae: Biology and Systematics, W.G. D’Arcy, Ed., Columbia University Press, New York (1986).

    Google Scholar 

  8. J.G. Roddick, Antifungal activity of plant steroids, in: Ecology and Metabolism of Plant Lipids, G. Fuller and W.D. Nes, Eds., American Chemical Society, Washington, DC (1987).

    Google Scholar 

  9. W.M.J. Van Gelder, Steroidal glycoalkaloids in Solanum: consequences for potato breeding and food safety, in: Toxicology of Plant and Fungal Compounds, R.F. Keeler and A.T. Tu, Eds., Marcel Dekker Inc., New York (1991).

    Google Scholar 

  10. W.M.J. Van Gelder, Chemistry, toxicology and occurrence of steroidal glycoalkaloids: potential contaminants of the potato (Solanum tuberosum L.), in: Poisonous Plant Contamination of Edible Plants, A-F.M. Rizk, Ed., CRC Press, Boca Raton (1990).

    Google Scholar 

  11. J.A. Maga, Glycoalkaloids in Solanaceae, Food Rev. Int. 10: 385 (1994).

    Article  CAS  Google Scholar 

  12. P. Slanina, Solanine (glycoallcaloids) in potatoes: toxicological evaluation, Food Chem. Toxic. 11: 759 (1990).

    Article  Google Scholar 

  13. G. Schulz and H. Sander, Ober Cholesterin-Tomatid. Eine neue Molektilverbindung zur Analyse und präparativen Gewinnung von Steroiden, Z. Physiol. Chem. 308: 122 (1957).

    Article  CAS  Google Scholar 

  14. M. Toyoda, W.D. Rausch, K. Inoue, Y. Ohno, Y. Fujiyama, K. Takagi and Y. Saito, Comparison of solanaceous glycoalkaloids-evoked Ca2+ influx in different types of cultured cells, Toxic. in Vitro 5: 347 (1991).

    Google Scholar 

  15. J.G. Roddick and R.B. Drysdale, Destabilization of liposome membranes by the steroidal glycoalkaloid a-tomatine, Phytochemistry 23: 543 (1984).

    Article  CAS  Google Scholar 

  16. P.A. Arneson and R.D. Durbin, Studies on the mode of action of tomatine as a fungitoxic agent, Plant Physiol. 43: 683 (1968).

    Article  PubMed  CAS  Google Scholar 

  17. C.C. Steel and R.B. Drysdale, Electrolyte leakage from plant and fungal tissues and disruption of liposome membranes by a-tomatine, Phytochemistry 27: 1025 (1988).

    Article  CAS  Google Scholar 

  18. P.M. Elias, D.S. Friend and J. Goerke, Membrane sterol heterogeneity. Freeze-fracture detection with saponins and filipin, J. Histochem. Cytochem. 27: 1247 (1979).

    Article  PubMed  CAS  Google Scholar 

  19. C. Andersson Forsman, Freeze-fracture cytochemistry of sympathetic ganglia. Distribution of filipin and tomatin induced membrane deformations in neurons and satellite cells, Histochemistry 82: 209 (1985).

    Article  CAS  Google Scholar 

  20. E.A.J. Keukens, T. De Vrije, C.H.J.P. Fabrie, R.A. Demel, W.M.F. Jongen and B. de Kruijff, Dual specificity of sterol-mediated glycoalkaloid induced membrane disruption, Biochim. Biophys. Acta 1110: 127 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. W.H. Orgell, K.A. Vaidya and P.A. Dahm, Inhibition of human plasma cholinesterase in vitro by extracts of solanaceous plants, Science 128: 1136 (1958).

    Article  PubMed  CAS  Google Scholar 

  22. W.H. Orgeli, Inhibition of human plasma cholinesterase in vitro by alkaloids, glycosides, and other natural substances, Lloydia 26: 36 (1963).

    Google Scholar 

  23. S.O. Alozie, R.P. Sharma and D.K. Salunkhe, Inhibition of rat cholinesterase isoenzymes in vitro and in vivo by the potato alkaloid, a-chaconine, J. Food Biochem. 2: 259 (1978).

    Article  Google Scholar 

  24. R.J. Bushway, SA. Savage and B.S. Ferguson, Inhibition of acetyl cholinesterase by solanaceous glycoalkaloids and alkaloids, Am. Potato J. 64; 409 (1987).

    Article  Google Scholar 

  25. J.G. Roddick, The acetylcholinesterase-inhibitory activity of steroidal glycoalkaloiods and their aglycones, Phytochemistry 28: 2631 (1989).

    Article  CAS  Google Scholar 

  26. W.H. Orgell and E.T. Hibbs, Cholinesterase inhibition in vitro by potato foliage extracts, Am. Potato J. 40: 403 (1963).

    Article  CAS  Google Scholar 

  27. M. McMillan and J.C. Thompson, An outbreak of suspected solanine poisoning in schoolboys: examination of criteria of solanine poisoning, Quart. J. Med. 48: 227 (1979).

    PubMed  CAS  Google Scholar 

  28. M.R.A. Morgan and D.T. Coxon, Tolerances: glycoalkaloids in potatoes, in: Natural Toxicants in Food: Progress and Prospects, D.H. Watson, Ed., VCH Publishers, New York (1987).

    Google Scholar 

  29. D.C. Baker, R.F. Keeler and W. Gaffield, Toxicosis from steroidal alkaloids of Solanum species, in: Toxicology of Plant and Fungal Compounds, R.F. Keeler and A.T. Tu, Eds., Marcel Dekker Inc., New York (1991).

    Google Scholar 

  30. G. Kusano, A. Takahashi, S. Nozoe, Y. Sonoda and Y. Sato, Solanum alkaloids as inhibitors of enzymatic conversion of dihydrolanosterol into cholesterol, Chem. Pharm. Bull. 35: 4321 (1987).

    Article  PubMed  CAS  Google Scholar 

  31. J. Kuc, Steroid glycoalkaloids and related compounds as potato quality factors, Am. Potato J. 61: 123 (1984).

    Article  CAS  Google Scholar 

  32. J.G. Roddick, Effect of a-tomatine on the integrity and biochemical activities of isolated plant cell organelles, J. Exp. Bot. 29: 1371 (1978).

    Article  CAS  Google Scholar 

  33. M.R. Rezk and L. Ferenczy, Growth inhibiting activity of some steroid glycoalkaloids on higher plants, Acta Biol. Szeged 15: 71 (1969).

    CAS  Google Scholar 

  34. M. Ghazi and G.A. Myers, The action of steroidal alkaloids on the ground meristem tissue of the root axis of lettuce seedlings, Environ. Exp. Bot. 30: 235 (1990).

    Article  CAS  Google Scholar 

  35. K. Fukuhara and I. Kubo, Isolation of steroidal glycoalkaloids from Solanum incanum by two countercurrent chromatographic methods, Phytochemistry 30: 685 (1991).

    Article  PubMed  CAS  Google Scholar 

  36. W.M. Tingey, Glycoalkaloids as pest resistance factors, Am. Potato J. 61: 157 (1984).

    Article  CAS  Google Scholar 

  37. K. Schreiber, Natürliche pflanzliche Resistenzstoffe gegen den Kartoffelkäfer and ihr möglicher Wirkungsmechanismus, Züchter 27: 289 (1957).

    Google Scholar 

  38. B. Stürckow and I. Löw, Die Wirkung einiger Solanum-Alkaloidglykoside auf den Kartoffelkäfer Leptinotarsa decemlineata, Say. Entomol. Exp. Appl. 4: 133 (1961).

    Article  Google Scholar 

  39. S.L. Sinden, L.L. Sanford and S.F. Osman, Glycoalkaloids and resistance to the Colorado potato beetle in Solanum chacoense Bitter, Am. Potato J. 57: 331 (1980).

    Article  CAS  Google Scholar 

  40. K.L. Deahl, W.W. Cantelo, S.L. Sinden and L.L. Sanford, The effect of light intensity on Colorado potato beetle resistance and foliar glycoalkaloid concentration of four Solanum chacoense clones, Am. Potato J. 68: 659 (1991).

    Article  CAS  Google Scholar 

  41. S.L. Sinden, W.W. Cantelo, L.L. Sanford and K.L. Deahl, Allelochemically mediated host resistance to the Colorado potato beetle, Leptinotarsa decemlineata (Say.) (Coleoptera: Chrysomelidae), Mem. Ent. Soc. Can. 159: 19 (1991).

    Google Scholar 

  42. M.B. Dimock, S.L. LaPointe and W.M. Tingey, Solanum neocardenasii: a new source of potato resistance to the Colorado potato beetle, J. Econ. Entomol. 79: 1269 (1986).

    Google Scholar 

  43. J.D. Barbour and G.G. Kennedy, Role of steroidal glycoalkaloid a-tomatine in host-plant resistance of tomato to the Colorado potato beetle, J. Chem Ecol. 17: 989 (1991).

    Article  CAS  Google Scholar 

  44. W.M. Tingey, J.D. Mackenzie and P. Gregory, Total foliar glycoalkaloids and resistance of wild potato species to Empoasca fabae (Harris), Am. Potato J. 55: 577 (1978).

    Article  CAS  Google Scholar 

  45. K.V. Raman, W.M. Tingey and P. Gregory, Potato glycoalkaloids: effect on survival and feeding behaviour of the potato leafhopper, J. Econ. Entomol. 72: 337 (1979).

    CAS  Google Scholar 

  46. L.L. Sanford, K.L. Deahl, S.L. Sinden and T.L. Ladd, Jr., Foliar solanidine glycoside levels in Solanum tuberosum populations selected for potato leafhopper resistance, Am. Potato J. 67: 461 (1990).

    Article  CAS  Google Scholar 

  47. L.L. Sanford, K.L. Deahl, S.L. Sinden and T.L. Ladd, Jr., Glycoalkaloid contents in tubers from Solanum tuberosum populations selected for potato leafhopper resistance, Am. Potato J. 69: 693 (1992).

    Article  CAS  Google Scholar 

  48. K.A. Bloem, K.C. Kelley and S.S. Duffey, Differential effect of tomatine and its alleviation by cholesterol on larval growth and efficiency of food utilization in Heliothis zea and Spodoptera exigua, J. Chem. Ecol. 15: 387 (1989).

    Article  CAS  Google Scholar 

  49. J.D. Hare, Growth of Leptinotarsa decemlineata larvae in response to simultaneous variation in protein and glycoalkaloid concentration, J. Chem. Ecol. 13: 39 (1987).

    Article  CAS  Google Scholar 

  50. B.C. Campbell and S.S. Duffey, Tomatine and parasitic wasps: potential incompatibility of plant antibiosis with biological control, Science 205: 700 (1979).

    Article  PubMed  CAS  Google Scholar 

  51. F. Gallardo, D.J. Boethel, J.R. Fuxa and A. Richter, Susceptibility of Heliothis zea (Boddie) larvae to Nomoraea rileyi (Farlow) Samson. Effects of a-tomatine at the third trophic level, J. Chem. Ecol. 16: 1751 (1990).

    Article  CAS  Google Scholar 

  52. P. Schwarze, Methoden zum Solaninnachweis und zur Solaninbestimmung in Kartoffelzuchtmaterial, Züchter 32: 155 (1962).

    CAS  Google Scholar 

  53. K.-E. Hellenäs, C. Branzell, H. Johnsson and P. Slanina, High levels of glycoalkaloids in the established Swedish potato variety Magnum Bonum, J. Sci. Food Agric. 68: 249 (1995).

    Article  Google Scholar 

  54. K. Takagi, M. Toyoda, Y. Fujiyama and Y. Saito, Effect of cooking on the contents of a-chaconine and a-solanine in potatoes, J. Food Hyg. Soc. Jap. 31: 67 (1990).

    Article  CAS  Google Scholar 

  55. R.J. Bushway, J.L. Bureau and D.F. McGann, Alpha-chaconne and alpha-solanine content of potato peels and potato peel products, J. Food Sci. 48: 84 (1983).

    Article  CAS  Google Scholar 

  56. S.L. Sinden, K.L. Deahl and B.B. Aulenbach, Effect of glycoalkaloids and phenolics on potato flavor, J. Food Sci. 41: 520 (1976).

    Article  CAS  Google Scholar 

  57. J. Hopkins, The glycoalkaloids: naturally of interest (but a hot potato), Food Chem. Toxicol. 33: 323 (1995).

    Article  PubMed  CAS  Google Scholar 

  58. K.-E. Hellenäs, A. Nyman, P. Slanina, L. Loöf and J. Gabrielson, Determination of potato glycoalkaloids and their aglycone in blood serum by HPLC, J. Chromatog. 573: 69 (1992).

    Google Scholar 

  59. A. Bömer and H. Mattis, Der Solaningehalt der Kartoffeln, Z. Unters. Nahrungs- Genußmittel, 47: 97 (1924).

    Article  Google Scholar 

  60. A. Parnell, V.S. Bhuva and E.J.B. Bintcliffe, The glycoalkaloid content of potato varieties, J. Natn. Inst. Agric. Bot. 16: 535 (1984).

    CAS  Google Scholar 

  61. J. Cheng, J.A. Saunders and S.L. Sinden, Colorado potato beetle resistant somatic hybrid potato plants produced via protoplast electrofusion, In Vitro Cell Dey. Biol. 31: 90 (1995).

    Google Scholar 

  62. A. Marston and K. Hostettmann, Plant molluscicides, Phytochemistry 24: 639 (1985).

    Article  CAS  Google Scholar 

  63. S.M. Kupchan, S.J. Barboutis, J.R. Knox and C.A. Lau Cam, Beta-solamarine: tumor inhibitor isolated from Solanum dulcamara, Science 150: 1827 (1965).

    Article  PubMed  CAS  Google Scholar 

  64. S. Singh, N.M. Khanna and M.M. Dhar, Solaplumbin, a new anticancer glycoside from Nicotiana plumbaginifolia, Phytochemistry 13: 2020 (1974).

    Article  CAS  Google Scholar 

  65. B.E. Cham, M. Gilliver and L. Wilson, Antitumour effects of glycoalkaloids isolated from Solanum sodomaeum, Planta Med. 53: 34 (1987).

    Article  PubMed  CAS  Google Scholar 

  66. B.E. Cham, B. Daunter and R.A. Evans, Topical treatment of malignant and premalignant skin lesions by very low concentrations of a standard mixture (BEC) of solasodine glycosides, Cancer Lett. 59: 183 (1991).

    Article  PubMed  CAS  Google Scholar 

  67. B.E. Cham and B. Daunter, Solasodine glycosides. Selective cytotoxicity for cancer cells and inhibition of cytotoxicity by rhamnose in mice with sarcoma 180, Cancer Lett. 55: 221 (1990).

    Article  PubMed  CAS  Google Scholar 

  68. B.E. Cham, Solasodine glycosides as anti-cancer agents: pre-clinical and clinical studies, Asia Pacific J. Pharmacol. 9: 113 (1994).

    Google Scholar 

  69. B. Daunter and B.E. Cham, Solasodine glycosides: in vitro preferential cytotoxicity for human cancer cells, Cancer Lett. 55: 209 (1990).

    Article  PubMed  CAS  Google Scholar 

  70. J.G. Roddick and A.L. Rijnenberg, Synergistic interaction between the potato glycoalkaloids a-solanine and a-chaconine in relation to lysis of phospholipid/sterol liposomes, Phytochemistry 26: 1325 (1987).

    Article  CAS  Google Scholar 

  71. J.G. Roddick, A.L. Rijnenberg and S.F. Osman, Synergistic interaction between the potato glycoalkaloids a-solanine and a-chaconine in relation to destabilization of cell membranes: ecological implications, J.Chem. Ecol. 14: 889 (1988).

    Article  CAS  Google Scholar 

  72. A.M. Fewell and J.G. Roddick, Interactive antifungal activity of the glycoalkaloids a-solanine and «chaconne, Phytochemistry 33: 323 (1993).

    Article  CAS  Google Scholar 

  73. J.G. Roddick, A.L. Rijnenberg and M. Weissenberg, Membrane-disrupting properties of the steroidal glycoalkaloids solasonine and solamargine, Phytochemistry 29: 1513 (1990).

    Article  CAS  Google Scholar 

  74. A.M. Fewell, J.G. Roddick and M. Weissenberg, Interactions between the glycoalkaloids solasonine and solamargine in relation to inhibition of fungal growth, Phytochemistry 37: 1007 (1994).

    Article  PubMed  CAS  Google Scholar 

  75. S.L. Sinden and L.L. Sanford, Origin and inheritance of solamarine glycoalkaloids in commercial potato cultivars, Am. Potato J. 58: 305 (1981).

    Article  CAS  Google Scholar 

  76. J.G. Roddick, A.L. Rijnenberg and M. Weissenberg, Alterations to the permeability of liposome membranes by the solasodine-based glycoalkaloids solasonine and solamargine, Phytochemistry 31: 1951 (1992).

    Article  CAS  Google Scholar 

  77. S.L. Sinden, R.W. Goth and M.J. O’Brien, Effect of potato alkaloids on the growth of Alternaria solani and their possible role as resistance factors, Phytopathology 63: 303 (1973).

    Article  CAS  Google Scholar 

  78. R.F. Keeler, D.C. Baker and W. Gaffield, Spirosolane-containing Solanum species and induction of congenital craniofacial malformations, Toxicon 28: 873 (1990).

    Article  PubMed  CAS  Google Scholar 

  79. L.L. Sanford, K.L. Deahl and S.L. Sinden, Glycoalkaloid content in foliage of hybrid and backcross populations from a Solanum tuberosum x S. chacoense cross, Am. Potato J. 71: 225 (1994).

    Article  CAS  Google Scholar 

  80. G.C. Percival, J.A.C. Harrison and G.R. Dixon, The influence of temperature on light enhanced glycoalkaloid synthesis in potato, Ann. Appl. Biol. 123: 141 (1993).

    Article  CAS  Google Scholar 

  81. M. Friedman and L. Dao, Distribution of glycoalkaloids in potato plants and commercial potato products, Agric. Food Chem. 40: 419 (1990).

    Article  Google Scholar 

  82. D.P. Bell, J.G. Gibson, A.M. McCarroll and G.A. McClean, Embryotoxicity of solanine and aspirin in mice, J. Reprod. Fert. 46: 257 (1976).

    Article  CAS  Google Scholar 

  83. S. Chaube and C.A. Swinyard, Teratological and toxicological studies of alkaloidal and phenolic compounds from Solanum tuberosum L., Toxicol. Appl. Pharmacol. 36: 227 (1976).

    Article  PubMed  CAS  Google Scholar 

  84. K. Nishie, M.R. Gumbmann and A.C. Keyl, Pharmacology of solanine, Toxicol. Appl. Pharmacol. 19: 81 (1971).

    Article  PubMed  CAS  Google Scholar 

  85. K. Nishie, W.P. Norred and A.P. Swain, Pharmacology and toxicology of chaconine and tomatine, Res. Comm. Chem. Pathol. Pharmacol. 12: 657 (1975).

    CAS  Google Scholar 

  86. C.A. Swinyard and S. Chaube, Are potatoes teratogenic for experimental animals? Teratology 8: 349 (1973).

    Article  PubMed  CAS  Google Scholar 

  87. U. Kanwar, A. Batts, S.N. Sanyal and A. Ranga, Glycolytic enzyme activities of human and bovine spermatozoa treated in vitro with solasodine, J. Ethnopharmacol. 28: 49 (1990).

    Article  Google Scholar 

  88. R.F. Keeler, D.C. Baker and W. Gaffield, Teratogenic Solanum species and responsible teratogens, in: Toxicology of Plant and Fungal Compounds, R.F. Keeler and A.T. Tu, Eds., Marcel Dekker Inc., New York (1991).

    Google Scholar 

  89. M. Friedman, J.R. Rayburn and J.A. Bantle, Developmental toxicology of potato alkaloids in the frog embryo teratogenesis assay - Xenopus (FETAX). Food Chem. Toxicol. 29: 537 (1991).

    Article  PubMed  CAS  Google Scholar 

  90. R.H. Wilson, G.W. Poley and F. DeEds, Some pharmacologic and toxicologic properties of tomatine and its derivatives, Toxicol. Appl. Pharmacol. 3: 39 (1961).

    Article  PubMed  CAS  Google Scholar 

  91. C.N. Aldous, R.P. Sharma and D.K. Salunkhe, Effects of a-chaconine on brain amines, electroencephalogram, cardiac rates and respiratory response in rats, J. Food Safety 2: 20 (1980).

    Article  CAS  Google Scholar 

  92. K. Nishie, T.J. Fitzpatrick, A.P. Swain and A.C. Keyl, Positive inotropic action of Solanaceae glycoalkaloids, Res. Comm. Chem. Pathol. Pharmacol. 15: 601 (1976).

    CAS  Google Scholar 

  93. B.C. Patil, R.P. Sharma, D.K. Salunkhe and K. Salunkhe, Evaluation of solanine toxicity, Food Cosmet. Toxicol. 10: 395 (1972).

    Article  PubMed  CAS  Google Scholar 

  94. T. Satoh, Glycemic effects of solanine in rats, Jap. J. Pharmacol. 17: 652 (1967).

    Article  CAS  Google Scholar 

  95. R.P. Sharma, C.C. Willhite, J.L. Shupe and D.K. Salunkhe, Acute toxicity and histopathological effects of certain glycoalkaloids and extracts of Alternaria solani or Phytophthora infestans in mice, Toxicol. Lett. 3: 349 (1979).

    Article  CAS  Google Scholar 

  96. D.C. Baker, R.F. Keeler and W. Gaffield, Pathology in hamsters administered Solanum plant species that contain steroidal alkaloids, Toxicon 27: 1331 (1989).

    Article  PubMed  CAS  Google Scholar 

  97. M. Friedman, Composition and safety evaluation of potato berries, potato and tomato seeds, potatoes, and potato alkaloids, in: Food Safety Assessment, J.W. Finley, S.F. Robinson and D.J. Armstrong, Eds., American Chemical Society, Washington, DC (1992).

    Google Scholar 

  98. F.W. Harris and T. Cockburn, Alleged poisoning by potatoes, Am. J. Pharm. 90: 722 (1918).

    Google Scholar 

  99. A.A. Hansen, Two fatal cases of potato poisoning, Science 61: 340 (1925).

    Article  PubMed  CAS  Google Scholar 

  100. S.G. Willimot, An investigation of solanine poisoning, Analyst 58: 431 (1933).

    Article  Google Scholar 

  101. G.S. Wilson, A small outbreak of solanine poisoning, Monthly Bull. Min. Health Pub. Health Lab. Serv. 18: 207 (1959).

    CAS  Google Scholar 

  102. E. Pfuhl, Über eine Massenerkrankung durch Vergiftung mit stark solaninhaltigen Kartoffeln, Deutsch. Med. Wochenschr. 25: 753 (1899).

    Article  Google Scholar 

  103. L.A. Reelah and A. Keem, A case of mass poisoning by solanine, Soy. Med. 22: 129 (1958).

    Google Scholar 

  104. G. Défago and H. Kern, Induction of Fusarium solani mutants insensitive to tomatine, their pathogenicity and aggressiveness to tomato fruits and pea plants, Physiol. Plant Path. 22: 29 (1983).

    Google Scholar 

  105. G. Défago, H. Kern and L. Sedlar, Genetic analysis of tomatine insensitivity, sterol content and pathogenicity for green tomato fruits in mutants of Fusarium solani, Physiol. Plant Path. 22: 39 (1983).

    Google Scholar 

  106. J.G. Roddick and A.L. Rijnenberg, Effect of steroidal glycoalkaloids of the potato on the permeability of liposome membranes, Physiol. Plant. 68: 436 (1986).

    Article  CAS  Google Scholar 

  107. E. Schlösser, Role of saponins in antifungal resistance. III Tomatin dependent development of fruit rot organisms on tomato fruits. Z. Pflanzenkr. Pflanzensch. 82: 476 (1975).

    Google Scholar 

  108. S.L. Sinden, L.L. Sanford, W.W. Cantelo and K.L. Deahl, Leptine glycoalkaloids and resistance of the Colorado potato beetle (Coleoptera: Chrysomelidae) in Solanum chacoense, Environ. Entomol. 15: 1057 (1986).

    CAS  Google Scholar 

  109. H.T. Chan, Jr. and S.Y.T. Tam, Toxicity of a-tomatine to larvae of the Mediterranean fruit fly (Diptera: Tephriditae), J. Econ. Entomol. 78: 305 (1985).

    CAS  Google Scholar 

  110. S.D. Eigenbrode and J.T. Trumble, Fruit-based tolerance to damage by beet armyworm (Lepidoptera: Noctuidae) in tomato, Pop. Ecol. 23: 937 (1994).

    Google Scholar 

  111. C. Hirano, K. Yasumi, E. Itoh, C.-S. Kim and M. Horiike, A feeding deterrent for Thrips palmi Kamy (Thysanoptera: Thripidae) found in tomato leaves: isolation and identification, Jap. J. Appl. Entomol. Zool. 38: 109 (1994).

    Article  CAS  Google Scholar 

  112. J.A. Juvik and M.A. Stevens, Physiological mechanisms of host-plant resistance in the genus Lycopersicon to Heliothis zea and Spodoptera exigua, two insect pests of the cultivated tomato, J. Am. Soc. Hort. Sci. 107: 1065 (1982).

    Google Scholar 

  113. T. Jonasson and K. Olsson, The influence of glycoalkaloids, chlorogenic acid and sugars on the susceptibility of potato tubers to wireworm, Potato Res. 37: 205 (1994).

    Article  CAS  Google Scholar 

  114. K. Olsson and T. Jonasson, Genotypic differences in susceptibility to wireworm attack in potato: mechanisms and implications for plant breeding, Plant Breed. 114: 66 (1995).

    Article  Google Scholar 

  115. R. Paquin, Study of the role of the glycoallcaloids in the resistance of potato to bacterial ring rot, Am. Potato J. 43: 349 (1966).

    Article  CAS  Google Scholar 

  116. J.A. Frank, J.M. Wilson and R.E. Webb, The relationship between glycoalkaloids and disease resistance in potatoes, Phytopathology 65: 1045 (1975).

    Article  CAS  Google Scholar 

  117. R.K. McKee, Factors affecting the toxicity of solanine and related alkaloids to Fusarium caeruleum, J. Gen. Microbiol. 20: 686 (1959).

    Article  PubMed  CAS  Google Scholar 

  118. D.L. Corsini and JJ. Pavek, Phenylalanine ammonia lyase activity and fungitoxic metabolites produced by potato cultivars in response to Fusarium tuber rot, Physiol. Plant Path. 16: 63 (1980).

    Article  CAS  Google Scholar 

  119. P. Langcake, R.B. Drysdale and H. Smith, Post-infectional production of an inhibitor of Fusarium oxysporum f. lycopersici by tomato plants, Physiol. Plant Path. 2: 17 (1972).

    Article  CAS  Google Scholar 

  120. C.A. Smith and W.E. MacHardy, The significance of tomatine in the host response of susceptible and resistant tomato isolines infected with two races of Fusarium oxysporum f. sp. lycopersici, Phytopathology 72: 415 (1982).

    Article  CAS  Google Scholar 

  121. K. Olsson, The influence of glycoalkaloids and impact damage on resistance to Fusarium solani var. coeruleum and Phoma exigua var. foveata in potato tubers, J. Phytopathol. 118: 347 (1987).

    Article  CAS  Google Scholar 

  122. K.L. Deahl, R.I. Young and S.L. Sinden, A study of the relationship of late blight resistance to glycoalkaloid content in fifteen potato clones, Am. Potato J. 50: 248 (1973).

    Article  CAS  Google Scholar 

  123. L.S. Morrow and F.L. Caruso Effect of potato seed tuber glycoalkaloid content on subsequent infection by Rhizoctonia solani, Am. Potato J. 60: 403 (1983).

    Article  CAS  Google Scholar 

  124. G.F. Pegg and S. Woodward, Synthesis and metabolism of a-tomatine in tomato isolines in relation to resistance to Verticillium albo-atrum, Physiol. Mol. Plant Path. 28: 187 (1986).

    Article  CAS  Google Scholar 

  125. J.M.S. Forrest and D.T. Coxon, The relationship between glycoalkaloids and resistance to the white potato cyst nematode, Globodera pallida in potato clones derived from Solanum verni, Ann. Appl. Biol. 94: 265 (1980).

    Article  CAS  Google Scholar 

  126. V. Grassert and H. Lellbach, Untersuchungen des Glykoalkaloidgehalts von Kartoffelhybriden mit Resistenz gegen die Kartoffelnematoden Globodera rostochiensis und Globodera pallida, Biochem. Physiol. Pflanzen 182: 473 (1987).

    CAS  Google Scholar 

  127. C.A. Elliger, A.C. Waiss, Jr., H.L. Dutton and M.F. Rose, a-Tomatine and resistance of tomato cultivars towards the nematode Meloidogyne incognita, J. Chem. Ecol. 14: 1253 (1988).

    Article  CAS  Google Scholar 

  128. K.A. Johnston and R.S. Pearce, Biochemical and bioassay analysis of resistance of potato (Solanum tuberosum L.) cultivars to attack by the slug Deroceras reticulatum (Muller), Ann. Appl. Biol. 124: 109 (1994).

    Article  Google Scholar 

  129. W.M.J. Van Gelder and O.M.B. De Ponti, a-Tomatine and other steroidal glycoalkaloids in fruits of tomato lines resistant to the glasshouse whitefly (Trialeurodes vaporariorum Westw.), Euphytica 36: 555 (1987).

    Google Scholar 

  130. W.M. Tingey and S.L. Sinden, Glandular pubescence, glycoalkaloid composition, and resistance to the green peach aphid, potato leafhopper, and potato fleabeetle in Solanum berthaultii, Am. Potato J. 59: 95 (1982).

    Article  CAS  Google Scholar 

  131. K.L. Flanders, J.G. Hawkes, E.B. Radcliffe and F.I. Lauer, Insect resistance in potatoes: sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations, Euphytica 61: 83 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Roddick, J.G. (1996). Steroidal Glycoalkaloids: Nature and Consequences of Bioactivity. In: Waller, G.R., Yamasaki, K. (eds) Saponins Used in Traditional and Modern Medicine. Advances in Experimental Medicine and Biology, vol 404. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1367-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1367-8_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1369-2

  • Online ISBN: 978-1-4899-1367-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics