Steroidal Glycosides from Petunia hybrida L. Seeds and Their Biological Activity

  • S. A. Shvets
  • P. K. Kintia
  • M. A. Naibi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 404)


One of the main goals of the chemistry of naturally occurring compounds is screening for promising biologically active substances of plant origin. In this connection, steroidal glycosides studied in several directions present significant interest. On the one hand, these products are utilized as initial compounds from which to synthesize hormonal preparations and medicines1; on the other hand, steroidal glycosides are of increased interest as biologically active material.


Carbohydrate Chain Petunia Hybrida Physicochemical Constant Steroidal Glycoside Chemical Shift Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.D. Maskovskiy. Medicines,Meditsina, Moscow (1995) (In Russian).Google Scholar
  2. 2.
    P.K. Kintia, G.V. Lazuryevskiy, N.N. Balashova, I.T. Balashova, A.I. Suruzhiu, and V.A. Lyakh, Structure and Biological Activity of Steroidal Glycosides of the Spirostane and Furostan Series,Shtiintsa, Kishinev (1987) (In Russian).Google Scholar
  3. 3.
    D.V. Ioffe, Natural compounds possessing antisclerotic properties, Khim. Prirodn. Soedin. 2:275 (1984) (In Russian).Google Scholar
  4. 4.
    P.K. Kintia, M.N Mats, S.A. Shvets, and L.P. Degtyaryova, Contraceptive activity of some steroidal glycosides, Rastit. Resur. 24:263 (1988) (In Russian).Google Scholar
  5. 5.
    C. Sannié and H. Lapin, Recherches sur les sapogenines a noyau sterolique. Identification de les genines sur de petites quantites de plantes. Bull. Soc. Chim. Fr. 19: 1080 (1952).Google Scholar
  6. 6.
    S. Kiyosawa and M. Huton, Detection of prototype compounds of diosgenin and other spirostanol glycosides. Chem. Pharm. Bull. 16: 1162 (1968).PubMedCrossRefGoogle Scholar
  7. 7.
    M.E. Wall, C.R. Eddy, M.L. McClennan, and M.E. Klumpp, Detection and estimation of steroidal sapogenins in plant tissues. Anal. Chem. 24: 1337 (1952).CrossRefGoogle Scholar
  8. 8.
    R. Tschesche, B.T. Tjoa, G. Wulff, and R.V. Noronha, Steroid Saponine mit mehr als einer Zuckerkette III. Convallamarosid, ein weiteres 22-Hydroxyfurostanol Saponin, Tetrahedron Lett. 49: 5141 (1968).CrossRefGoogle Scholar
  9. 9.
    P.K. Agrawal, D.C. Jain, and R.K. Gupta, Carbon 13-NMR spectroscopy of steroidal sapogenins and steroidal saponins Phytochemistry 24: 2479 (1985).CrossRefGoogle Scholar
  10. 10.
    E.V. Gutsu, P.K. Kintia, S.A. Shvets, and G.V. Lazuryevskiy, Steroidal glycosides from Capsicum annuum roots. Structure of capsicosides A1, B1, C1. Rhim. Prirodn. Soedin. 6:708 (1986) (In Russian).Google Scholar
  11. 11.
    V.V. Krokhmalyuk, P.K. Kintia, and V.Ya. Chirva, Gas-liquid chromatography of monosaccharides of triterpene glycosides. Izv. AN MSSR 1: 103 (1975) (In Russian).Google Scholar
  12. 12.
    S. Hakomori, A rapid permethylation of glycolipids and polysaccharides catalyzed by methylsulfonyl carbanion in dimethyl sulfoxide, J. Biochem. (Tokyo) 55: 205 (1964).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • S. A. Shvets
    • 1
  • P. K. Kintia
    • 1
  • M. A. Naibi
    • 1
  1. 1.Institute of GeneticsAcademy of ScienceChisinauMoldova

Personalised recommendations