Advertisement

Modified Steroidal Glycosides with Potential Biological Activity

  • D. Iurea
  • C. V. Uglea
  • P. K. Kintia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 404)

Abstract

Saponins constitute bioactive substances of vegetal origin, having a wide variety of biological activities. Special mention should be made of their antimicrobial and fungicidal activity1,2. The general structure of such compounds may be viewed as consisting of two distinct regions, namely the polysaccharidic chain and the genin part, having a rigid steroid skeleton of the molecule which together represent the biologically active properties of such compounds.

Keywords

Selective Oxidation Periodic Acid Virus Suspension Chlorine Dioxide Sodium Chlorite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.S. Dimoglo, I.N. Choban, and I.R. Bersuker, Structure-activity corelation for antioxidant and antifungal properties of steroid glycosides, J. Bioorg. Chem. 11: 408 (1985).Google Scholar
  2. 2.
    P. Ehrlich, Collected Studies on Immunology, 1906, 2:42–48 cited by R. Arshady, J. Bioact. Comp. Polym. 5: 315 (1990).Google Scholar
  3. 3.
    R.M. Ottembrite, in: The Import of Chemistry on Biotechnology, M. Phillips, S.P. Shoemaker, R.D. Middlekauff and R.M. Ottembrite, Eds., ACS Symposium Series, 362:122 (1988).Google Scholar
  4. 4.
    R.M. Ottembrite, in Polymeric Drugs and Drugs Delivery Systems, R.L. Dunn and R.M. Ottembrite, Eds., ACS Symposium Series, 469:3 (1991).Google Scholar
  5. 5.
    R.G. Douglas, Antiviral drugs, Med. Clin. Amer. 67: 1163 (1983).Google Scholar
  6. 6.
    P.K. Kintia, G.V. Lazurievsky, N.N. Balashova, I.I. Suruahin, and V.A. Lyakh, Structure and Biological Activity of Steroid Glycosides of the Spirostan and Furostan Series, Shtiintsa, Kishinev (1987).Google Scholar
  7. 7.
    V.A. Bobeyko, P.K. Kintia, and I.V. Dranka, Thermal decomposition of furostanol glycoside-tomatoside, J. Thermal Anal. 36: 1307 (1990).CrossRefGoogle Scholar
  8. 8.
    T. Kawasaki, I. Nishioka, T. Komori, T. Yamauchi, and K. Miyahara, Digitalis saponins, Tetrahedron 21: 299 (1965).CrossRefGoogle Scholar
  9. 9.
    R. Tschesche, A.M. Javellana, and G. Wulff, Purpureagitosid, ein bisdesmosidisches 22-Hydroxyfurostanol-Glycosid aus den Glattem von Digitalis purpurea L., Chem. Ber. 107: 2828 (1974).CrossRefGoogle Scholar
  10. 10.
    C.V. Uglea, I.N. Albu, A. Vatajanu, M. Croitoru, D. lurea, M. Isac, and R.M. Ottembrite, Polyanionic Polymers. I. Synthesis, Characterization, and Potential Medical Applications of Benzocaine modified carboxymethylcellulose, J. Bioact. Compat. Polym. 9: 448 (1994).CrossRefGoogle Scholar
  11. 11.
    E. Maesawa and T. Kosijama, Properties of 2,3-dicaboxycellulose metallic salts, Cell Chem. Technol. 18: 31 (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • D. Iurea
    • 1
  • C. V. Uglea
    • 1
  • P. K. Kintia
    • 2
  1. 1.Institute of Biological ResearchIassyRomania
  2. 2.Institute of GeneticsAcademy of ScienceChisinauMoldovia

Personalised recommendations