Steroidal Saponins from the Liliaceae Plants and Their Biological Activities

  • Yoshihiro Mimaki
  • Yutaka Sashida
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 404)


The steroidal saponins are plant glycosides and they often possess properties such as froth forming, hemolytic activity, toxicity to fish, and complex formation with cholesterol. Some of the steroidal saponins isolated recently have been shown to be antidiabetic,1 antitumor,2 antitussive3 and platelet aggregation inhibitors.4 These reports have prompted us to carry out systematic studies on steroidal saponins of the Liliaceae and Agavaceae5 plants. Our studies have resulted in the isolation of a number of new steroidal saponins including cholestane glycosides and steroidal alkaloids, some of which appeared to possess unique chemical structures and exhibited significant biological activities. In this review, we present steroidal compounds with novel structural features. The positive inotropic effects of steroidal and triterpene saponins associated with inhibition of cAMP phosphodiesterase (PDE) and antitumor activities of cholestane glycosides are also presented.


Large Cell Carcinoma Triterpene Glycoside Steroidal Saponin Triterpene Saponin Steroidal Glycoside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Nakashima, I. Kimura, M. Kimura, and H. Matsuura, Isolation of pseudoprototimosaponin AIII from rhizomes of Anemarrhena asphodeloides and its hypoglycemic activity in streptozotocin-induced diabetic mice, J. Nat. Prod. 56: 345 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    R. -T. Wu, H. -C. Chiang, W. -C Fu, K. -Y. Chien, Y. -M. Chung, and L. -Y. Horng, Formosanin-C, an immunomodulator with antitumor activity, Int. J.Immunopharmac. 12: 777 (1990).Google Scholar
  3. 3.
    T. Miyata, Antitussive action of Mai-Men-Dong-Tang: Suppression of ACE inhibitor-and tachykinin-inducing dry cough, J. Trad. Sino-Jpn. Med. 13: 276 (1992).Google Scholar
  4. 4.
    A. Niwa, O. Takeda, M. Ishimaru, Y. Nakamoto, K. Yamasaki, H. Kohda, H. Nishio, T. Segawa, K. Fujimura, and A. Kuramoto, Screening test for platelet aggregation inhibitor in natural products. The active principle of Anemarrhenae Rhizoma, Yakugaku Zasshi 108: 555 (1988).PubMedGoogle Scholar
  5. 5.
    Most of the Agavaceae plants had been classified as Liliaceae or Amaryllidaceae and the occurrence of steroidal saponins in the several Agavaceae plants, especially those belonging to the representative genera Agave and Yucca,is well documented: S. B. Mahato, A. N. Ganguly, and N. P. Sahu, Steroid saponins, Phytochemistry 21: 959 (1982).Google Scholar
  6. 6.
    Y. Mimaki, K. Kawashima, T. Kanmoto, and Y. Sashida, Steroidal glycosides from Album albopilosum and A. ostrowskianum, Phytochemistry 34: 799 (1993).PubMedCrossRefGoogle Scholar
  7. 7.
    H. Shimomura, Y. Sashida, and Y. Mimaki, 26-O-Acylated furostanol saponins pardarinoside A and B from the bulbs of Lilium pardarinum, Chem. Pharm. Bull. 36: 3226 (1988).CrossRefGoogle Scholar
  8. 8.
    H. Shimomura, Y. Sashida, and Y. Mimaki, Steroidal saponins, pardarinoside A - G from the bulbs of Liliumpardarinum, Phytochemistry 28: 3163 (1989).CrossRefGoogle Scholar
  9. 9.
    K. Kaneko, M. Tanaka, U. Nakaoka, Y. Tanaka, N. Yoshida, and H. Mitsuhashi, Camtschatcanidine, an alkaloid from Fritillaria camtschatcensis, Phytochmistry 20: 327 (1981).CrossRefGoogle Scholar
  10. 10.
    Y. Sashida, Y. Mimaki, and H. Shimomura, Isolation and structure of kuroyurinidine, a new jerveratrum alkaloid from Fritillaria camtschatcensis, Chem. Lett. 897 (1989).Google Scholar
  11. 11.
    Y. Mimaki and Y. Sashida, Studies on the chemical constituents of the bulbs of Fritillaria camtschatcensis, Chem. Pharm. Bull. 38: 1090 (1990).CrossRefGoogle Scholar
  12. 12.
    K. Ori, Y. Mimaki, Y. Sashida, T. Nikaido, T. Ohmoto, and A. Masuko, Persicanidine A, a novel cerveratrum alkaloid from the bulbs of Fritillariapersica, Chem. Lett. 163 (1992).Google Scholar
  13. 13.
    K. Ori, Y. Mimaki, Y. Sashida, T. Nikaido, and T. Ohmoto, Cerveratrum alkaloids from bulbs of Fritillaria persica, Phytochemistry 31: 3605 (1992).CrossRefGoogle Scholar
  14. 14.
    M. Kuroda, Y. Mimaki, Y. Sashida, T. Nikaido, and T. Ohmoto, Structure of a novel 22-homo-23-norcholestane trisaccharide from Ornithogalum saundersiae, Tetrahedron Lett. 34: 6073 (1993).CrossRefGoogle Scholar
  15. 15.
    Y. Mimaki, K. Ori, Y. Sashida, T. Nikaido, L. -G. Song, and T. Ohmoto, Peruvianoside A, a novel migrated lanostane trisacharide from Scilla peruviana, Chem. Lett. 1999 (1992).Google Scholar
  16. 16.
    Y. Mimaki, K. Ori, Y. Sashida, T. Nikaido, L. -G. Song, and T. Ohmoto, Peruvianosides A and B, novel triterpene glycosides from the bulbs of Scilla peruviana, Bull. Chem. Soc. Jpn. 66: 1182 (1993).CrossRefGoogle Scholar
  17. 17.
    T. Horikawa, Y. Mimaki, A. Kameyama, Y. Sashida, T. Nikaido, and T. Ohmoto, Aculeoside A, a novel steroidal saponin containing a deoxyaldoketose from Ruscus aculeatus, Chem. Lett. 2303 (1994).Google Scholar
  18. 18.
    Y. Takaashi, Y. Mimaki, A. Kameyama, M. Kuroda, Y. Sashida, T. Nikaido, K. Koike, and T. Ohmoto, Three new cholestane bisdesmosides from Nolinarecurvata stems and their inhibitory activity on cAMP phosphodiesterase and Na+/K+ ATPase, Chem. Pharm. Bull. 43: 1180 (1995).CrossRefGoogle Scholar
  19. 19.
    I. Ohtani, T. Kusumi, M. O. Ishitsuka, and H. Kakisawa, Absolute configurations of marine diterpenes possessing a xenicane skeleton. An application of an advanced Mosher’s method, Tetrahedron Lett. 30: 3147 (1989).CrossRefGoogle Scholar
  20. 20.
    Y. Takaashi, Y. Mimaki, M. Kuroda, Y. Sashida, T. Nikaido, and T. Ohmoto,. Recurvosides A - E, new polyhydroxylated steroidal saponins from Nolina recurvata stems, Tetrahedron, 51: 2281 (1995).CrossRefGoogle Scholar
  21. 21.
    T. Nikaido, T. Ohmoto, T. Kinoshita, U. Sankawa, S. Nishibe, and S. Hisada, Inhibition of cyclic AMP phosphodiesterase by lignans, Chem. Pharm. Bull. 29: 3586 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    H. Sakurai, T. Nikaido, T. Ohmoto, Y. Ikeya, and H. Mitsuhashi, Inhibitors of adenosine 3’,5’-cyclic monophosphate phosphodiesterase from Schisandra chinensis and the structure-activity relationship of lignans, Chem. Pharm. Bull. 40: 1191 (1992).CrossRefGoogle Scholar
  23. 23.
    Nakamura, Y. Mimaki, Y. Sashida, T. Nikaido, and T. Ohmoto Agapanthussaponins A - D, new potent cAMP phosphodiesterase inhibitors from the underground parts of Agapanthus inapertus, Chem. Pharm. Bull. 41: 1784 (1993).Google Scholar
  24. 24.
    Y. Mimaki, T. Nikaido, K. Matsumoto, Y. Sashida, and T. Ohmoto, New steroidal saponins from the bulbs of Allium giganteum exhibiting potent inhibition of cAMP phosphodiesterase activity, Chem. Pharm. Bull. 42: 710 (1994).PubMedCrossRefGoogle Scholar
  25. 25.
    Unpublished data..Google Scholar
  26. 26.
    M. Kuroda, Y. Mimaki, A. Kameyama, Y. Sashida, and T. Nikaido, Steroidal saponins from Allium chinense and their inhibitory activities on cyclic AMP phosphodiesterase and Na+/K+ ATPase, Phytochemistry, 40: 1071 (1995).PubMedCrossRefGoogle Scholar
  27. 27.
    Anticancer agent: JP 95-P0207705.Google Scholar
  28. 28.
    T. Hirano, K. Oka, Y. Mimaki, M. Kuroda, and Y. Sashida, Potent cytostatic activity of a novel Ornithogalum cholestane glycoside on human cells: induction of apoptosis in promyelocytic leukemia HL-60 cells, Life Sci., in press (1996).Google Scholar
  29. 29.
    Anticancer agent: JP 95-P0281706.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Yoshihiro Mimaki
    • 1
  • Yutaka Sashida
    • 1
  1. 1.School of PharmacyTokyo University of Pharmacy and Life ScienceTokyoJapan

Personalised recommendations