Advertisement

Platelet-Activating Factor and PAF-Like Mimetics

  • Ralph E. Whatley
  • Guy A. Zimmerman
  • Stephen M. Prescott
  • Thomas M. McIntyre
Part of the Handbook of Lipid Research book series (HLRE, volume 8)

Abstract

Platelet-activating factor (PAF; 1-O-alkyl–2-acetyl-sn-glycero-3-phosphocholine; Fig. 7-1) is a potent bioactive lipid, with a diverse array of biologic effects in isolated systems, and which has as many roles in inflammatory states in vivo. Its name comes from observations in 1972 that a lipid extracted from the blood of rabbits undergoing anaphylaxis caused ex vivo activation of platelets (Benveniste et al., 1972). At about the same time, other investigators found that a lipid extracted from kidneys lowered blood pressure in an animal model (Blank et al.,1979). Subsequent elucidation of the structure of these compounds showed both to be 1-O-alkyl–2-acetyl-sn-glycero-3-phosphocholine. Although the name derives from its original description as an activator of platelets, it belies the vast array of other actions known to be mediated by this potent lipid. In fact, activation of platelets may be its least important role: rats, and many of their isolated cells, respond to PAF, but their platelets are resistant as they lack the high-affinity receptor for PAF.

Keywords

Cigarette Smoke Extract Ethanolamine Plasmalogen Remodel Pathway Choline Head Group Cell Calcium Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abisogun, A. O., Braquet, P., and Tsafriri, A., 1989, The involvement of platelet activating factor in ovulation, Science 243: 381–382.PubMedCrossRefGoogle Scholar
  2. Arnoux, B., Duval, D., and Benveniste, J., 1980, Release of platelet-activating factor (PAF-acether) from alveolar macrophages by the calcium ionophore A23187 and phagocytosis, Eur. J. Clin. Invest. 10: 437–441.PubMedCrossRefGoogle Scholar
  3. Ban, C., Billah, M. M., Truong, C. T., and Johnston, J. M., 1986, Metabolism of platelet-activating factor (1-O-alkyl-2-sn-glycero-3-phosphocholine) in human fetal membranes and decidua vera, Arch. Biochem. Biophys. 246: 9–18.PubMedCrossRefGoogle Scholar
  4. Benveniste, J., Henson, P. M., and Cochrane, C., 1972, Leukocyte-dependent histamine release from rabbit platelets, J. Exp. Med. 136: 1356–1375.PubMedCrossRefGoogle Scholar
  5. Billah, M. M., and Johnston, J. M., 1983, Identification of phospholipid platelet-activating factor in human amniotic fluid and urine, Biochem. Biophys. Res. Commun. 113: 51–58.PubMedCrossRefGoogle Scholar
  6. Billah, M. M., Di Renzio, G. C., Ban, C., Truong, C. T., Hoffman, D. R., Anceschi, M. M., Bleasdale, J. E., and Johnston, J. M., 1985, Platelet-activating factor metabolism in human amnion and the responses of this tissue to extracellular platelet-activating factor, Prostaglandins 30: 841–850.PubMedCrossRefGoogle Scholar
  7. Bito, H., Nakamura, M., Honda, Z., Izumi, T., Iwatsubo, T., Seyama, Y., Ogura, A., Kudo, Y., and Shimizu, T., 1992, Platelet-activating factor (PAF) receptor in rat brain: PAF mobilizes intracellular Cat+ in hippocampal neurons, Neuron 9: 285–294.PubMedCrossRefGoogle Scholar
  8. Blank, M. L., Snyder, F., Byers, L. W., Brooks, B., and Muirhead, E. E., 1979, Antihypertensive activity of an alkyl ether analog of phosphatidylcholine, Biochem. Biophys. Res. Commun. 90: 1194–1200.PubMedCrossRefGoogle Scholar
  9. Blank, M. L., Cress, E. A., Lee, T.-c., Malone, B., Surles, J. R., Piantadosi, C., Hajdu, J., and Snyder, E, 1982, Structural features of platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) required for hypotensive and platelet serotonin responses. Res. Commun. Chem. Pathol. Pharmacol. 38: 3–20.PubMedGoogle Scholar
  10. Blank, M. L., Fitzgerald, V., Smith, Z. L., and Snyder, E, 1995, Generation of the precursor (lysoPAF) of platelet-activating factor via a CoA-dependent transacylase, Biochem. Biophys. Res. Commun. 210: 1052–1058.PubMedCrossRefGoogle Scholar
  11. Bratton, D. L., Harris, R. A., Clay, K. L., and Henson, P. M., 1988, Effects of platelet activating factor on calcium—lipid interactions and lateral phase separations in phospholipid vesicles, Biochim. Biophys. Acta 943: 211–219.PubMedCrossRefGoogle Scholar
  12. Bussolino, F., Gremo, E, Tetta, C., Pescarmosa, P., and Camussi, G., 1986, Production of platelet-activating factor by chick retina, J. Biol. Chem. 261: 16502–16508.PubMedGoogle Scholar
  13. Camussi, G., Aglietta, M., Coda, R., Bussolino, E, Piacibello, W., and Tetta, C., 1981, Release of platelet-activating factor (PAF) and histamine, Immunology 42: 191–199.PubMedGoogle Scholar
  14. Camussi, G., Bussolino, F., Tetta, C., Piacibello, W., and Aglietta, M., 1983a, Biosynthesis and release of platelet-activating factor from human monocytes, Int. Arch. Allergy Apps. Immunol. 70: 245.CrossRefGoogle Scholar
  15. Camussi, G., Pawlowski, I., Bussolino, F., Caldwell, P. R. B., Brentjens, J., and Andres, G., 1983b, Release of platelet activating factor in rabbits with antibody-mediated injury of the lung: The role of leukocytes and of pulmonary endothelial cells, J. Immunol. 131: 1802–1807.PubMedGoogle Scholar
  16. Channon, J. Y, and Leslie, C. C., 1990, A calcium-dependent mechanism for associating a soluble arachidonoyl-hydrolyzing phospholipase A2 with membrane in the macrophage cell line RAW 264.7, J. Biol. Chem. 265: 5409–5413.PubMedGoogle Scholar
  17. Chilton, F. H., Ellis, J. M., Olson, S. C., and Wykle, R. L., 1984, O-0-Alkyl-2-arachidonoyl-sn-glycero-3phosphocholine: A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes, J. Biol. Chem. 259: 12014–12019.PubMedGoogle Scholar
  18. Clark, J. D., Milona, N., and Knopf, J. L., 1990, Purification of a 110-kilodalton cytosolic phospholipase A2 from the human monocytic cell line U937, Proc. Natl. Acad. Sci. USA 87: 7708–7712.PubMedCrossRefGoogle Scholar
  19. Clark, J. D., Lin, L. L., Kriz, R. W., Ramesha, C. S., Sultzman, L. A., Lin, A. Y., Milona, N., and Knopf, J. L., 1991, A novel arachidonic acid-selective cytosolic PLA2 contains a Cat+-dependent translocation domain with homology to PKC and GAP, Cell 65: 1043–1051.PubMedCrossRefGoogle Scholar
  20. Clark, P. 0., Hanahan, D. J., and Pinckard, R. N., 1980, Physical and chemical properties of platelet-activating factor obtained from human neutrophils and monocytes and rabbit neutrophils and basophils, Biochim. Biophys. Acta 628: 69–75.Google Scholar
  21. Cluzel, M., Undem, B. J., and Chilton, E H., 1989, Release of platelet-activating factor and the metabolism of leukotriene B4 by the human neutrophil when studied in a cell superfusion model, J. Immunol. 143: 3659–3665.PubMedGoogle Scholar
  22. Cooper, D., Butcher, C. M., Berndt, M. C., and Vadas, M. A.,1994, P-selectin interacts with a 32-integrin to enhance phagocytosis, J. Immunol. 153: 3199–3209.Google Scholar
  23. Cox, C. P., Wardlow, M. L., Jorgenson, R., and Farr, R. S., 1981, The presence of platelet-activating factor (PAF) in normal human mixed saliva, J. Immunol. 127: 46–50.PubMedGoogle Scholar
  24. Daniel, L. W., Waite, M., and Wykle, R. L., 1986, A novel mechanism of diglyceride formation, J. Biol. Chem. 261: 9128–9132.PubMedGoogle Scholar
  25. Daniel, L. W., Small, G. W., and Schmitt, J. D., 1988, Alkyl-linked diglycerides inhibit protein kinase C activation by diacylglycerols, Biochem. Biophys. Res. Commun. 151: 291–297.PubMedCrossRefGoogle Scholar
  26. Demopoulos, C. A., Pinckard, R. N., and Hanahan, D. J., 1979, Platelet-activating factor: Evidence for 1-O-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine as the active component (a new class of lipid chemical mediators), J. Biol. Chem. 254: 9355–9358.PubMedGoogle Scholar
  27. Dohlman, H. G., Thorner, J., Caron, M. G., and Lefkowitz, R. J., 1991, Model systems for the study of seven-transmembrane-segment receptors, Annu. Reu. Biochem. 60: 653–658.CrossRefGoogle Scholar
  28. Domenech, C., Domenech, E. M.-d., and Soling, H.-D., 1987, Regulation of acetyl-CoA:1-alkyl-snglycero-3-phosphocholine acetyltransferase (lyso-PAF-acetyltransferase) in exocrine glands: Evidence for an activation via phosphorylation by calcium/calmodulin-dependent protein kinase, J Biol. Chem. 262: 5671–5676.PubMedGoogle Scholar
  29. Durstin, M., Durstin, S., Molski, T. F. P., Becker, E. L., and Sh’afi, R. I., 1994, Cytoplasmic phospholipase A2 translocates to membrane fraction in human neutrophils activated by stimuli that phosphorylate mitogen-activated protein kinase, Proc. Natl. Acad. Sci. UA 91: 3142–3146.CrossRefGoogle Scholar
  30. Elstad, M. R., Prescott, S. M., McIntyre, T. M., and Zimmerman, G. A., 1988, Synthesis and release of platelet-activating factor by stimulated human mononuclear phagocytes, J. Immunol. 140: 1618 1624.Google Scholar
  31. Exton, J. H., 1988, Mechanisms of action of calcium-mobilizing agonists: Some variations on a young theme, FASEB J. 2: 2670–2676.PubMedGoogle Scholar
  32. Feliste, R., Perret, B., Braquet, P., and Chap, H., 1989, Protective effect of BN 52021, a specific antagonist of platelet-activating factor (PAF-acether) against diet-induced cholesteryl ester deposition in rabbit aorta, Atherosclerosis 78: 151–158.PubMedCrossRefGoogle Scholar
  33. Frenkel, R. A., and Johnston, J. M., 1992, Metabolic conversion of platelet-activating factor into ethanolamine plasmalogen in an amnion-derived cell line, J. Biol. Chem. 267: 19186–19191.PubMedGoogle Scholar
  34. Garcia, M. C., Mueller, H. W., and Rosenthal, M. D., 1991, C20 polyunsaturated fatty acids and phorbol myristate acetate enhance agonist-stimulated synthesis of 1-radyl-2-acetyl-sn-glycero-3-phosphocholine in vascular endothelial cells, Biochim. Biophys. Acta 1083: 37–45.PubMedCrossRefGoogle Scholar
  35. Gasic, A. C., McGuire, G., Krater, S., Farhood, A. I., Goldstein, M. A., Smith, C. W., Entman, M. L., and Taylor, A. A., 1991, Hydrogen peroxide pretreatment of perfused canine vessels induces ICAM-1 and CD18-dependent neutrophil adherence, Circulation 84: 2154–2166.PubMedCrossRefGoogle Scholar
  36. Gerard, N. P., and Gerard, C., 1994, Receptor-dependent internalization of platelet-activating factor,/ Immunol. 152: 793–800.Google Scholar
  37. Goetzl, E. J., Derian, C. K., Tauber, A. I., and Valone, F. H., 1980, Novel effects of 1-O-hexadecyl-2acyl-sn-glycero-3-phosphorylcholine mediators on human leukocyte functions: Delineation of the specific roles of the acyl substituents, Biochem. Biophys. Res. Commun. 94: 881–888.PubMedCrossRefGoogle Scholar
  38. Gomez-Cambronero, J., Velasco, S., Sanchez-Crespo, M., Vivanco, F., and Mato, J. M., 1986, Partial purification and characterization of 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase from rat spleen, Biochem. J 237: 439–445.PubMedGoogle Scholar
  39. Gomez-Cambronero, J., Mato, J. M., Vivanco, F., and Sanchez-Crespo, M., 1987, Phosphorylation of partially purified 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine:acetyl-CoA acetyltransferase from rat spleen, Biochem. J. 246: 893–898.Google Scholar
  40. Gonzalez-Crussi, F., and Hsueh, W., 1983, Experimental model of ischemic bowel necrosis. The role of platelet-activating factor and endotoxin, Am. J Pathol. 112: 127–135.PubMedGoogle Scholar
  41. Goracci, G., Francescangeli, E., Dreyfus, H., Boila, A., and Freysz, L., 1994, The synthesis of platelet-activating factor in brain and neural cells, J. Lipid Mediat. 10: 7–8.Google Scholar
  42. Halonen, M., Palmer, J. D., Lohman, C., McManus, L. M., and Pinckard, R. N., 1980, Respiratory and circulatory alterations induced by acetyl glyceryl ether phosphorylcholine, a mediator of IgE anaphylaxis in the rabbit, Am. Rev. Respir. Dis. 122: 915–924.PubMedGoogle Scholar
  43. Hanahan, D. J., 1986, Platelet activating factor: A biologically active phosphoglyceride, Annu. Rev. Biochem. 55: 483–509.PubMedCrossRefGoogle Scholar
  44. Hattori, M., Arai, H., and Inoue, K., 1993, Purification and characterization of bovine brain platelet-activating factor acetylhydrolase, J. Biol. Chem. 268: 18748–18753.PubMedGoogle Scholar
  45. Hattori, M., Adachi, H., Tsujimoto, M., Arai, H., and Inoue, K., 1994, The catalytic subunit of bovine brain platelet-activating factor acetylhydrolase is a novel type of serine esterase, J. Biol. Chem. 269: 23150–23155.PubMedGoogle Scholar
  46. Hogaboam, C. M., and Wallace, J. M., 1994, Intestinal PAF synthesis: The role of the mast cell, J Lipid Mediat. 10: 103–105.Google Scholar
  47. Holland, M. R., Venable, M. E., Whatley, R. E., Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M., 1992, Activation of the acetyl-coenzyme A: lysoplatelet-activating factor acetyltransferase regulates platelet-activating factor synthesis in human endothelial cells, J Biol. Chem. 267: 22883–22890.PubMedGoogle Scholar
  48. Honda, Z., Nakamura, M., Miki, I., Minami, M., Watanabe, T., Seyama, Y, Okado, H., Toh, H., Ito, K, Miyamoto, T., and Shimizu, T., 1991, Cloning by functional expression of platelet-activating factor receptor from guinea-pig lung, Nature 349: 342–346.PubMedCrossRefGoogle Scholar
  49. Honda, Z.-i., Takano, T., Gotoh, Y., Nishida, E., Ito, K., and Shimizu, T., 1994, Transfected platelet-activating factor receptor activates mitogen-activated protein (MAP) kinase and MAP kinase in Chinese hamster ovary cells, J Biol. Chem. 269: 2307–2315.PubMedGoogle Scholar
  50. Hsueh, W., Gonzalez-Crussi, F., and Arroyave, J. L., 1987, Platelet-activating factor: An endogenous mediator for bowel necrosis in endotoxemia, FASEB J. 1: 403–405.PubMedGoogle Scholar
  51. Hughes, B.J., Hollers, J. C., Crocket-Torabi, E., and Smith, C. W., 1992, Recruitment of CD11b/CD18 to the neutrophil surface and adherence-dependent cell locomotion, J Clin. Invest. 90: 1687–1696.PubMedCrossRefGoogle Scholar
  52. Hughes, H., Sands, M. A., McGuire, G. M., and Taylor, A. A., 1994, PAF formation by H202-stimulated perfused canine carotid arteries, Prostaglandins Leuk. Essent. Fatty Acids 51: 323–328.CrossRefGoogle Scholar
  53. Hwang, S.-B., 1990, Specific receptors of platelet-activating factor, receptor heterogeneity, and signal transduction mechanisms, J. Lipid Res. 2: 123–158.Google Scholar
  54. Hwang, S.-B., and Lam, M -H, 1991, L-659,989: A useful probe in the detection of multiple conformational states of PAF receptors, Lipids 26: 1148–1153.PubMedCrossRefGoogle Scholar
  55. Imaizumi, T., Satoh, K., Yoshida, H., Kawamura, H., Hiramoto, M., and Takamatsu, S., 1991, Effect of cigarette smoking on the levels of platelet-activating factor-like lipid(s) in plasma lipoproteins, Atherosclerosis 87: 47–55.PubMedCrossRefGoogle Scholar
  56. Itabe, H., Kushi, Y., Handa, S., and Inoue, K, 1988, Identification of a 2-azelaoylphosphatidylcholine as one of the cytotoxic products generated during oxyhemoglobin-induced peroxidation of phosphatidylcholine, Biochim. Biophys. Acta 962: 8–15.PubMedCrossRefGoogle Scholar
  57. Johnston, J. M., and Miyaura, S., 1990, Platelet-activating factor: The alpha and omega of reproductive biology, in: Advances in Applied Technology Series, Vol. 9 ( J. T. O’Flaherty and P. W. Ramwell, eds.), pp. 139–160, Portfolio Publishing, The Woodlands, TX.Google Scholar
  58. Kayganich-Harrison, K A., and Murphy, R. C., 1994, Characterization of chain-shortened oxidized glycerophosphocholine lipids using fast atom bombardment and tandem mass spectrometry, Anal. Biochem. 221: 16–24.PubMedCrossRefGoogle Scholar
  59. Kenzora, J. L., Perez, J. E., Bergmann, S. R., and Lange, L. G., 1984, Effects of acetyl glyceryl ether of phosphorylcholine (platelet-activating factor) on ventricular preload, afterload, and contractility in dogs, J. Clin. Invest. 74: 1193–1203.PubMedCrossRefGoogle Scholar
  60. Khai, T.-K., Hung, D. T., Wheaton, V. I., and Coughlin, S. R., 1991, Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation, Cell 64: 1057 1068.Google Scholar
  61. Kloprogge, E., and Akkerman, J. W. N., 1984, Binding kinetics of PAF-acether to intact human platelets, Biochem. J. 223: 901–909.PubMedGoogle Scholar
  62. Kramer, R. M., Roberts, E. F., Manetta, J., and Putnam, J. E., 1991, The Cat+-sensitive cytosolic phospholipase A2 is a 100-kDa protein in human monoblast U937 cells, J. Biol. Chem. 266: 52685272.Google Scholar
  63. Kramer, R. M., Roberts, E. F., Manetta, J. V., Hyslop, P. A., and Jakubowski, J. A., 1993, Thrombin-induced phosphorylation and activation of Ca++-sensitive cytosolic phospholipase A2 in human platelets, J. Biol. Chem. 268: 26796–26804.PubMedGoogle Scholar
  64. Kumar, R., Harvey, S. A. K., Kester, M., Hanahan, D.J., and Olson, M. S., 1988, Production and effects of platelet-activating factor in the rat brain, Biochim. Biophys. Acta 963: 375–383.PubMedCrossRefGoogle Scholar
  65. Kunz, D., Gerard, N. P., and Gerard, C., 1992, The human leukocyte platelet-activating factor receptor, J. Biol. Chem. 267: 9101–9106.PubMedGoogle Scholar
  66. Lachachi, H., Plantavid, M., Simon, M. F., Chap, H., Braquet, P., and Douste-Blazy, L., 1985, Inhibition of transmembrane movement and metabolism of platelet activating factor (PAF-acether) by a specific antagonist, BN 52021, Biochem. Biophys. Res. Commun. 132: 460–466.PubMedCrossRefGoogle Scholar
  67. Lee, T-c., 1985, Biosynthesis of platelet-activating factor: Substrate specificity of 1-alkyl-2-lyso-snglycero-3-phosphocholine:acetyl-CoA acetyltransferase in rat spleen microsomes, J Biol. Chem. 260: 10952–10955.PubMedGoogle Scholar
  68. Lee, T.-c., Lenihan, D. J., Malone, B., Roddy, L. L., and Wasserman, S. I.,1984, Increased biosynthesis of platelet-activating factor in activated human eosinophils, J. Biol. Chem. 259: 5526–5530.Google Scholar
  69. Lee, T-c., Malone, B., and Snyder, F.,1986, A new de novo pathway for the formation ofl-alkyl-2-acetyl-snglycerols, precusors of platelet activating factor, J. Biol. Chem. 261: 5373–5377.Google Scholar
  70. Lehr, H. A., Hubner, C., Nolte, D., Finckh, B., Beisiegel, U., Kohlschutter, A., and Mebmer, K., 1991, Oxidatively modified human low-density lipoprotein stimulates leukocyte adherence to the microvascular endothelium in vivo, Res. Exp. Med. 191: 85–90.CrossRefGoogle Scholar
  71. Lehr, H. A., Seemuller, J., Hubner, C., Menger, M. D., and Messmer, K, 1993, Oxidized LDL-induced leukocyte/endothelium interaction in vivo involves the receptor for platelet-activating factor, Arterioscler. Thromb. 13: 1013–1018.PubMedCrossRefGoogle Scholar
  72. Lenihan, D. J., and Lee, T-c., 1984, Regulation of platelet-activating factor synthesis: Modulation of 1-alkyl-2-lyso-sn-glycero-3-phosphocholine: Acetyl-CoA acetyltransferase by phosphorylation and dephosphorylation in rat spleen microsomes, Biochem. Biophys. Res. Commun. 120: 834–839.PubMedCrossRefGoogle Scholar
  73. Leslie, C. C., 1991, Kinetic properties of a high molecular mass arachidonoyl-hydrolyzing phospholipase A2 that exhibits lysophospholipase activity, J. Biol. Chem. 266: 11366–11371.PubMedGoogle Scholar
  74. Leslie, C. C., Voelker, D. R., Channon, J. Y., Wall, M. M., and Zelarney, P. T., 1988, Properties and purification of an arachidonoyl-hydrolyzing phospholipase A2 from a macrophage cell line, RAW 264.7, Biochim. Biophys. Acta 963: 476–492.PubMedCrossRefGoogle Scholar
  75. Lewis, M. S., Whatley, R. E., Cain, P., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A., 1988, Hydrogen peroxide stimulates the synthesis of platelet-activating factor by endothelium and induces endothelial cell-dependent neutrophil adhesion, J. Clin. Invest. 82: 2045–2055.PubMedCrossRefGoogle Scholar
  76. Lin, L.-L., Wartmann, M., Lin, A.-Y, Knopf, J. L., Seth, A., and Davis, R. J., 1993, cPLA„ is phosphorylated and activated by MAP kinase, Cell 72: 269–278.Google Scholar
  77. Lorant, D. E., Patel, K. D., McIntyre, T. M., McEver, R. P., Prescott, S. M., and Zimmerman, G. A., 1991, Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: A juxtacrine system for adhesion and activation of neutrophils, j Cell Biol. 115: 223–234.PubMedCrossRefGoogle Scholar
  78. Lorant, D. E., Topham, M. K., Whatley, R. E., McEver, R. P., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A., 1993, Inflammatory roles of P-selectin, J. Clin. Invest. 92: 559–570.PubMedCrossRefGoogle Scholar
  79. MacDonald, J. I. S., and Sprecher, H., 1991, Phospholipid fatty acid remodeling in mammalian cells, Biochim. Biophys. Acta 1084: 105–121.PubMedCrossRefGoogle Scholar
  80. McIntyre, T. M., Zimmerman, G. A., Satoh, K., and Prescott, S. M., 1985, Cultured endothelial cells synthesize both platelet-activating factor and prostacyclin in response to histamine, bradykinin, and adenosine triphosphate, J. Clin. Invest. 76: 271–280.PubMedCrossRefGoogle Scholar
  81. McIntyre, T. M., Reinhold, S. L., Prescott, S. M., and Zimmerman, G. A., 1987, Protein kinase C activity appears to be required for the synthesis of platelet-activating factor and leukotriene B4 by human neutrophils, J. Biol. Chem. 262: 15370–15376.PubMedGoogle Scholar
  82. McIntyre, T., Patel, K. D., Smiley, P. L., Stafforini, D., Prescott, S. M., and Zimmerman, G. A., 1994, Oxidized phospholipids with PM-like bioactivity, j Lipid Med. 10: 37–40.Google Scholar
  83. McIntyre, T. M., Patel, K. D., Zimmerman, G. A., and Prescott, S. M., 1995, Oxygen radical-mediated leukocyte adherence, in: Physiology and Pathophysiology of Leukocyte Adhesion ( D. N. Granger and G. W. Schmid-Schonbein, eds.), pp. 261–277, Oxford University Press, London.Google Scholar
  84. Maki, N., Hoffman, D. R., and Johnston, J. M., 1988, Platelet-activating factor acetylhydrolase activity inGoogle Scholar
  85. maternal, fetal, and newborn rabbit plasma during pregnancy and lactation Proc. Natl. Acad. Sci. USA 85:728–732.Google Scholar
  86. Marcheselli, V. L., Rossowska, M. J., Domingo, M.-T., Braquet, P., and Bazan, N. G., 1990, Distinct platelet-activating factor binding sites in synaptic endings and in intracellular membranes of rat cerebral cortex, J. Biol. Chem. 265: 9140–9145.PubMedGoogle Scholar
  87. Miwa, M., Sugatani, J., Ikemura, T., Okamoto, Y., Ino, M., Saito, K., Suzuki, Y., and Matsumoto, M.,1992, Release of newly synthesized platelet-activating factor (PAF) from human polymorphonuclear leukocytes under in vivo conditions, J. Immunol. 148: 872–880.Google Scholar
  88. Miyaura, S., Eguchi, H., and Johnston, J. M., 1992, Effect of a cigarette smoke extract on the metabolism of the proinflammatory autocoid, platelet-activating factor, Circ. Res. 70: 341–347.PubMedCrossRefGoogle Scholar
  89. Mojarad, M., Cox, C. P., and Said, S. I., 1985, Platelet-activating factor and acute lung injury, in: The Pulmonary Circulation and AcuteLunglnjury ( S. I. Said, ed.) pp. 375–386, Futura Publishing, Mount Kisco, NY.Google Scholar
  90. Muller, S., and Nigam, S., 1992, Enhancement by staurosporine of platelet-activating factor formation in n-formyl peptide-challenged human neutrophils is mediated by intracellular platelet-activating factor binding sites, Biochem. Biophys. Res. Commun. 189: 771–776.PubMedCrossRefGoogle Scholar
  91. Mutoh, H., Bito, H., Minami, M., Nakamura, M., Honda, Z., Izumi, T., Nakata, R., Kurachi, Y, Terano, A., and Shimizu, T., 1993, Two different promoters direct expression of two distinct forms of mRNAs of human platelet-activating factor receptor, FEBS 322: 129–134.CrossRefGoogle Scholar
  92. Narahara, H., and Johnston, J. M., 1993, Smoking and preterm labor: Effect of a cigarette smoke extract on the secretion of platelet-activating factor-acetylhydrolase by human decidual macrophages, Am. J. Obstet. Gynecol. 169: 1321–1326.PubMedCrossRefGoogle Scholar
  93. Nieto, M. L., Velasco, S., and Sanchez-Crespo, M., 1988, Modulation of acetyl-CoA:1-alkyl-2-lyso-snglycero-3-phosphocholine (lyso-PAF) acetyltransferase in human polymorphonuclear leukocytes: The role of cyclic AMP-dependent and phospholipid sensitive, calcium-dependent protein kinases, J. Biol. Chem. 263: 4607–4611.PubMedGoogle Scholar
  94. Nieto, M. L., Venable, M. E., Bauldry, S. A., Greene, D. G., Kennedy, M., Bass, D. A., and Wykle, R., 1991, Evidence that hydrolysis of ethanolamine plasmalogens triggers synthesis of platelet-activating factor via a transacylase reaction, J. Biol. Chem. 266: 18699–18706.PubMedGoogle Scholar
  95. Ninio, E., Mencia-Huerta, J. M., Heymans, F., and Benveniste, J., 1982, Biosynthesis of platelet-activating factor: I. Evidence for an acetyltransferase activity in murine macrophages, Biochim. Biophys. Acta 710: 23–31.PubMedCrossRefGoogle Scholar
  96. Ninio, E., Mencia-Huerta, J. M., and Benveniste, J., 1983, Biosynthesis of platelet-activating factor: V. Enhancement of acetyltransferase activity in murine peritoneal cells by calcium ionophore A23187, Biochim. Biophys. Acta 751: 298–304.PubMedCrossRefGoogle Scholar
  97. O’Flaherty, J. T., Salzer, W. L., Cousart, S., McCall, C. E., Piantadosi, C., Surles, J. R., Hammett, M. J., and Wykle, R. L., 1983, Platelet-activating factor and analogues: Comparative studies with human neutrophils and rabbit platelets, Res. Commun. Chem. Pathol. Pharmacol. 39: 291–304.PubMedGoogle Scholar
  98. O’Neill, C., Ryan, J. P., Collier, M., Saunders, D. M., Ammit, A. J., and Pike, I. L., 1992, Outcome of a trial of supplementing human IVF culture media with platelet-activating factor, Reprod. Fertil. Dev. 4: 109–112.PubMedCrossRefGoogle Scholar
  99. Patel, K. D., Zimmerman, G. A., Prescott, S. M., McEver, R. P., and McIntyre, T. M., 1991, Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils, J. Cell Biol. 112: 749–759.PubMedCrossRefGoogle Scholar
  100. Patel, K. D., Zimmerman, G. A., Prescott, S. M., and McIntyre, T. M., 1992, Novel leukocyte agonists are released by endothelial cells exposed to peroxide, J. Biol. Chem. 267: 15168–15175.PubMedGoogle Scholar
  101. Pinckard, R. N., Farr, R. S., and Hanahan, D.J., 1979, Physicochemical and functional identity of rabbit platelet-activating factor (PAF) release in vivo during IgE anaphylaxis with PAF released in vitro from IgE-sensitized basophils, J Immunol. 123: 1847–1855.PubMedGoogle Scholar
  102. Qui, Z.-H., de Carvalho, M. S., and Leslie, C. C., 1993, Regulation of phospholipase A2 activation by phosphorylation in mouse peritoneal macrophages, J. Biol. Chem. 268: 24506–24513.Google Scholar
  103. Record, M., Ribbes, G., Terce, E, and Chap, H., 1989, Subcellular localization of phospholipids and enzymes involved in PAF-acether metabolism, J. Cell Biochem. 40: 353–359.PubMedCrossRefGoogle Scholar
  104. Reinhold, S. L., Zimmerman, G. A., Prescott, S. M., and McIntyre, T. M., 1989, Phospholipid remodeling in human neutrophils, J. Biol. Chem. 264: 21652–21659.PubMedGoogle Scholar
  105. Rinder, H. M., Tracey, J. L., Rinder, C. S., Leitenberg, D., and Smith, B. R., 1994, Neutrophil but not monocyte activation inhibits P-selectin-mediated platelet adhesion, Thromb. Haemost. 71: 750–756.Google Scholar
  106. Ryan, J. P., Spinks, N. R., O’Neill, C., and Wales, R. G., 1990, Implantation potential and fetal viability of mouse embryos cultured in media supplemented with platelet-activating factor, J Immunol. 123: 1847–1855.Google Scholar
  107. Satoh, K., Imaizumi, T., Kawamura, Y, Yoshida, H., Takamatsu, S., and Mizuno, S., 1988, Activity of platelet-activating factor (PAF) acetylhydrolase in plasma from patients with ischemic cerebrovascular disease, Prostaglandins 35: 685–698.PubMedCrossRefGoogle Scholar
  108. Satoh, K., Imaizumi, T.-A., Kawamura, Y., Yoshida, H., Takamatsu, S., and Takamatsu, M., 1989, Increased activity of the platelet-activating factor acetylhydrolase in plasma low density lipoprotein from patients with essential hypertension, Prostaglandins 37: 673–682.PubMedCrossRefGoogle Scholar
  109. Satoh, K., Imaizumi, T. A., Kawamura, Y., Yoshida, H., Hiramoto, M., Takamatsu, S., and Takamatsu, M., 1991, Platelet-activating factor (PAF) stimulates the production of PAF acetylhydrolase by the human hepatoma cell line, HepG2, J. Clin. Invest. 87: 476–481.PubMedCrossRefGoogle Scholar
  110. Satoh, K., Imaizumi, T: a., Yoshida, H., and Takamatsu, S., 1993, Effect of 1713-estradiol on secretion of platelet-activating factor acetylhydrolase by HepG2 cells, Metabolism 42: 672–677.Google Scholar
  111. Schilling, W. P., Cabello, O. A., and Rajan, L., 1992, Depletion of the inositol 1,4,5-trisphosphatesensitive intracellular Cat+ store in vascular endothelial cells activates the agonist-sensitive Cat+-influx pathway, Biochem. J 284: 521–530.PubMedGoogle Scholar
  112. Schneider, E., Haest, C. W. M., and Deuticke, B., 1986, Transbilayer reorientation of platelet-activating factor in the erythrocyte membrane, FEBS 198: 311–313.CrossRefGoogle Scholar
  113. Seyfried, C. E., Schweickart, V. L., Godiska, R., and Gray, P. W., 1992, The human platelet activating factor receptor gene (PAFR) contains no introns and maps to chromosome 1, Genomics 13: 832–834.PubMedCrossRefGoogle Scholar
  114. Sharp, J. D., White, D. L., Chiou, X. G., Goodson, T., Gamboa, G. C., McClure, D., Burgett, S., Hoskins, J., Skatrud, P. L., Sportsman, J. R., Becker, G. W., Kang, L. H., Roberts, E. F., and Kramer, R. M., 1991, Molecular cloning and expression of human Ca++-sensitive cytosolic phospholipase A2, j Biol. Chem. 266: 14850–14853.PubMedGoogle Scholar
  115. Shen, T. Y., Hwang, S.-B., Doebber, T. W., and Robbins, J. C., 1987, The chemical and biological properties of PAF agonists, antagonists, and biosynthetic inhibitors, in: Platelet-Activating Factorand Related Lipid Mediators ( E Snyder, ed.), pp. 153–190, Plenum Press, New York.CrossRefGoogle Scholar
  116. Shimizu, T., Honda, Z., Hakamura, M., Bito, H., and Izumi, T., 1992, Platelet-activating factor receptor and signal transduction, Biochem. Pharmacol. 44: 1001–1008.PubMedCrossRefGoogle Scholar
  117. Shukla, S. D., 1992, Platelet activating factor receptor and signal transduction mechanisms, FASEBJ 6: 2296–2301.Google Scholar
  118. Sisson, J. H., Prescott, S. M., McIntyre, T. M., and Zimmerman, G. A., 1987, Production of platelet-activating factor by stimulated human polymorphonuclear leukocytes: Correlation of synthesis with release, functional events, and leukotriene B 4 metabolism, J. Immunol. 138: 3918–3926.PubMedGoogle Scholar
  119. Smiley, P. L., Stremler, K. E., Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M., 1991a, Oxidativelyfragmented phosphatidylcholines activate human neutrophils through the receptor for platelet-activating factor, J. Biol. Chem. 266: 11104–11110.PubMedGoogle Scholar
  120. Snyder, F., 1987, Enzymatic pathways for platelet-activating factor, related alkyl glycerolipids, and their precursors, in: Platelet-Activating Factor and Related Lipid Mediators ( E Snyder, ed.), pp. 89–113, Plenum Press, New York.CrossRefGoogle Scholar
  121. Snyder, F., 1995a, Platelet-activating factor and its analogs: Metabolic pathways and related intracellular processes, Biochim. Biophys. Acta 1254: 231–249.PubMedCrossRefGoogle Scholar
  122. Snyder, F., 1995b, Platelet-activating factor: The biosynthetic and catabolic enzymes, Biochem. J. 305: 689–705.PubMedGoogle Scholar
  123. Snyder, E, Lee, T.-c., and Blank, M. L., 1992, The role of transacylases in the metabolism of arachidonate and platelet-activating factor, Prog. Lipid Res. 31: 65–86.PubMedCrossRefGoogle Scholar
  124. Stafforini, D. M., McIntyre, T. M., Carter, M. E., and Prescott, S. M., 1987a, Human plasma platelet-Google Scholar
  125. activating factor acetylhydrolase: Association with lipoprotein particles and role in the degradation of platelet-activating factor, J Biol. Chem. 262: 4215–4222.Google Scholar
  126. Stafforini, D. M., Prescott, S. M., and McIntyre, T. M., 1987b, Human plasma platelet-activating factor acetylhydrolase: Purification and properties, J. Biol. Chem. 262: 4223–4230.PubMedGoogle Scholar
  127. Stafforini, D. M., Prescott, S. M., and McIntyre, T. M., 1988, Platelet-activating factor acetylhydrolase in human erythrocytes, FASEB J. 2: M375.Google Scholar
  128. Stafforini, D. M., Elstad, M. E., McIntyre, T. M., Zimmerman, G. A., and Prescott, S. M., 1990a, Human macrophages secrete platelet-activating factor acetylhydrolase, J. Biol. Chem. 265: 9682–9687.PubMedGoogle Scholar
  129. Stafforini, D. M., McIntyre, T. M., and Prescott, S. M., 1990b, Platelet-activating factor acetylhydrolase from human plasma, Methods Enzymol. 187: 344–357.PubMedCrossRefGoogle Scholar
  130. Stafforini, D. M., Prescott, S. M., Zimmerman, G. A., and McIntyre, T. M., 1991, Platelet-activating factor acetylhydrolase activity in human tissues and blood cells, Lipids 26: 979–985.PubMedCrossRefGoogle Scholar
  131. Stafforini, D. M., Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M., 1992, The platelet-activating factor acetylhydrolase from human plasma prevents oxidative modification of low-density lipoprotein, Trans. Assoc. Am. Physicians 105: 44–63.PubMedGoogle Scholar
  132. Stewart, A. G., Dubbin, P. N., Harris, T., and Dusting, G.J., 1989, Evidence for an intracellular action of platelet-activating factor in bovine cultured aortic endothelial cells, Br. J Pharmacol. 96: 503–505.PubMedCrossRefGoogle Scholar
  133. Stewart, A. G., Dubbin, P. N., Harris, T., and Dusting, G. J., 1990, Platelet-activating factor may act as a second messenger in the release of eicosanoids and superoxide anions from leukocytes and endothelial cells, Proc. Natl. Acad. Sci. USA 87: 3215–3219.PubMedCrossRefGoogle Scholar
  134. Stoll, L. L., and Spector, A. A., 1989, Interaction of platelet-activating factor with endothelial and vascular smooth muscle cells in coculture, J. Cell. Physiol. 139: 253–261.PubMedCrossRefGoogle Scholar
  135. Stoll, L. L., Denning, G. M., Kasner, N. A., and Hunninghake, G. W., 1994, Platelet-activating factor may stimulate both receptor-dependent and receptor-independent increases in [Ca2+] in human airway epithelial cells, J. Biol. Chem. 269: 4254–4259.PubMedGoogle Scholar
  136. Stremler, K. E., Stafforini, D. M., Prescott, S. M., and McIntyre, T. M., 1991, Human plasma platelet-activating factor acetylhydrolase: Oxidatively-fragmented phospholipids as substrates, J. Biol. Chem. 266: 11095–11103.PubMedGoogle Scholar
  137. Suga, K., Kawasaki, T., Blank, M. L., and Snyder, F., 1990, An arachidonoyl (polyenoic)-specific phospholipase A2 activity regulates the synthesis of platelet-activating factor in granulocytic HL-60 cells, J. Biol. Chem. 265: 12363–12371.PubMedGoogle Scholar
  138. Sugiura, T., and Waku, K., 1987, Composition of alkyl ether-linked phospholipids in mammalian tissues, in: Platelet-Activating Factor and Related Lipid Mediators ( F. Snyder, ed.), pp. 55–85, Plenum Press, New York.CrossRefGoogle Scholar
  139. Suguira, T., Fukuda, T., Masuzawa, Y, and Waku, K., 1990, Ether lysophospholipid-induced production of platelet-activating factor in human polymorphonuclear leukocytes Biochim. Biophys. Acta 1047: 223–232.CrossRefGoogle Scholar
  140. Suguira, T., Yamashita, A., Kudo, N., Kishimoto, S., and Waku, K., 1994, Platelet-activating factor and related lipid molecules in invertebrates, j Lipid Med. 10: 185–186.Google Scholar
  141. Sun, X. M., and Hsueh, W., 1988, Bowel necrosis induced by tumor necrosis factor in rats is mediated by platelet-activating factor, J. Clin. Invest. 81: 1328–1331.PubMedCrossRefGoogle Scholar
  142. Suttorp, N., and Habben, E., 1988, Effect of staphylococcal alpha-toxin on intracellular Ca2+ in polymorphonuclear leukocytes, Infect. Immun. 56: 2228–2234.PubMedGoogle Scholar
  143. Suzuki, M., Asako, H., Kubes, P., Jennings, S., Grisham, M. B., and Granger, D. N., 1991, Neutrophilderived oxidants promote leukocyte adherence in postcapillary venules, Microvasc. Res. 42: 125–138.PubMedCrossRefGoogle Scholar
  144. Takano, T., Honda, Z.-i., Sakanaka, C., Izumi, T., Kameyam, K, Haga, K, Haga, T., Kurokawa, K, and Shimizu, T., 1994, Role of cytoplasmic tail phosphorylation sites of platelet-activating factor receptor in agonist-induced desensitization, J. Biol. Chem. 269: 22453–22458.PubMedGoogle Scholar
  145. Tanaka, T., Minamino, H., Unezaki, S., Tsukatani, H., and Tokumura, A., 1993, Formation of platelet-activating factor-like phospholipids by Fee+/ascorbate/EDTA-induced lipid peroxidation, Biochim. Biophys. Acta 1166: 264–274.PubMedCrossRefGoogle Scholar
  146. Tarbet, E. B., Stafforini, D. M., Elstad, M. R. Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M., 1991, Liver cells secrete the plasma form of platelet-activating factor acetylhydrolase,/ Biol. Chem. 266:16667–16673.Google Scholar
  147. Tessner, T. G., and Wykle, R. L., 1987, Stimulated neutrophils produce an ethanolamine plasmalogen analog of platelet-activating factor, J. Biol. Chem. 262: 12660–12664.PubMedGoogle Scholar
  148. Tetta, C., Montrucchio, G., Alloatti, G., Roffinello, C., Emanuelli, G., Benedetto, C., Camussi, G., and Massobrio, M., 1986, Platelet-activating factor contracts human myometrium in vitro, Proc. Soc. Exp. Biol. Med. 183: 376–381.PubMedGoogle Scholar
  149. Tjoelker, L. W., Wilder, C., Eberhardt, C., Stafforini, D. M., Dietsch, G., Schimpf, B., Hooper, S., Trong, H. L., Cousens, L. S., Zimmerman, G. A., Yamada, Y, McIntyre, T. M., Prescott, S. M., and Gray, P. W., 1995, Cloning of human plasma platelet-activating factor acetylhydrolase: A lipase that inhibits PAF-mediated inflammation, Nature 374: 549–553.PubMedCrossRefGoogle Scholar
  150. Tokumura, A., Asai, T., Takauchi, K., Kamiyasu, K., Ogawa, T., and Tsukatani, H., 1988, Novel phospholipids with aliphatic dicarboxylic acid residues in a lipid extract from bovine brain, Biochem. Biophys. Res. Commun. 155: 863–869.PubMedCrossRefGoogle Scholar
  151. Tokumura, A., Takauchi, K., Asai, T., Kamiyasu, K., Ogawa, T., and Tsukatani, H., 1989, Novel molecular analogues of phosphatidylcholines in a lipid extract from bovine brain: 1-long-chain acyl-2-short-chain acyl-sn-glycero-3-phosphocholines, j Lipid Res. 30: 219–224.Google Scholar
  152. Triggiani, M., Hubbard, W. C., and Chilton, F. H., 1990, Synthesis of 1-acyl-2-acetyl-sn-glycero-3phosphocholine by an enriched preparation of the human lung mast cell,/ Immunol. 144:47734780.Google Scholar
  153. Triggiani, M., Goldman, D. W., and Chilton, F. H., 1991a, Biological effects of 1-acyl-2-acetyl-snglycero-3-phosphocholine in the human neutrophil, Biochim. Biophys. Acta 1084: 41–47.PubMedCrossRefGoogle Scholar
  154. Triggiani, M. K., Schleimer, R. P., Warner, J. A., and Chilton, E H., 1991b, Differential synthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine and platelet-activating factor by human inflammatory cells, J. Immunol. 147: 660–666.Google Scholar
  155. Triggiani, M., Schleimer, R. P., Tomioka, K., Hubbard, W. C., and Chilton, F. H., 1992, Characterization of platelet-activating factor synthesized by normal and granulocyte-macrophage colony-stimulating factor-primed human eosinophils, Immunology 77: 500–504.PubMedGoogle Scholar
  156. Tsuji, T., Nagata, K., Koike, J., Todoroki, N., and Irimura, T., 1994, Induction of superoxide anion production from monocytes and neutrophils by activated platelets through the P-selectin-sialyl Lewis X interaction, J. Leukoc. Biol. 56: 583–587.PubMedGoogle Scholar
  157. Uemura, Y, Lee, T.-c., and Snyder, E, 1991, A coenzyme A-independent transacylase is linked to the formation of platelet-activating factor by generating the lyso-PAF intermediate in the remodeling pathway, J. Biol. Chem. 266: 8268–8272.PubMedGoogle Scholar
  158. Vallari, D. S., Record, M., and Snyder, F., 1990, Conversion of alkylacetylglycerol to platelet-activating factor in HL-60 cells and subcellular localization of the mediator, Arch. Biochem. Biophys. 276: 538–545.Google Scholar
  159. Valone, E H., 1987, Platelet-activating factor binding to specific cell membrane receptors, in: Platelet- Activating Factor and Related Lipid Mediators (F. Snyder, ed.), pp. 137–151Google Scholar
  160. Plenum Press, New York. Valone, F. H., Coles, C., Reinhold, V. R., and Goetzl, E. J., 1982, Specific binding of phospholipids platelet-activating factor by human platelets, J Immunol. 129: 1637–1641.Google Scholar
  161. Voelkel, N. F., Worthen, S., Reeves, J. T., and Henson, P. M., 1982, Nonimmunological production of leukotrienes induced by platelet activating factor, Science 218: 286–288.Google Scholar
  162. Waite, M., 1985, Approaches to the study of mammalian cellular phospholipases, J. Lipid Res. 26: 1379 1388.Google Scholar
  163. Whatley, R. E., Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M., 1988, Endothelium from diverse vascular synthesizes platelet-activating factor, Arteriosclerosis 8: 321–331.PubMedCrossRefGoogle Scholar
  164. Whatley, R. E., Nelson, P., Zimmerman, G. A., Stevens, D. L., Parker, C.J., McIntyre, T. M., and Prescott, S. M., 1989, The regulation of platelet-activating factor production in endothelial cells, J. Biol. Chem. 264: 6325–6333.PubMedGoogle Scholar
  165. Whatley, R. E., Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M., 1990, Lipid metabolism and signal transduction in endothelial cells, Frog. Lipid Res. 29: 45–63.CrossRefGoogle Scholar
  166. Whatley, R. E., Clay, K. L., Chilton, F. H., Triggiani, M., Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M., 1992, Relative amounts of 1–0-alkyl-and 1-acy1–2-acetyl-sn-glycero-3-phosphocholine in stimulated endothelial cells, Prostaglandins 43: 21–29.PubMedCrossRefGoogle Scholar
  167. Whatley, R. E., Satoh, K., Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M., 1994, Proliferation-dependent changes in release of arachidonic acid from endothelial cells,/ Clin. Invest. 94: 1889 1900.Google Scholar
  168. Whorton, A. R., Willis, C. E., Kent, R. S., and Young, S. L., 1984, The role of calcium in the regulation of prostacyclin synthesis by porcine aortic endothelial cells, Lipids 19: 17–24.PubMedCrossRefGoogle Scholar
  169. Wijkander, J., and Sundler, R., 1992a, Macrophage arachidonate-mobilizing phospholipase A2: Role of Cat+ for membrane binding but not for catalytic activity, Biochem. Biophys. Res. Commun. 184: 118–124.PubMedCrossRefGoogle Scholar
  170. Wijkander, J., and Sundler, R., 1992b, Regulation of arachidonate-mobilizing phospholipase A2 by phosphorylation via protein kinase C in macrophages, FEBS 311: 299–301.CrossRefGoogle Scholar
  171. Winkler, J. D., Sung, C.-M., Hubbard, W. C., and Chilton, F. H., 1993, Influence of arachidonic acid on indices of phospholipase A2 activity in the human neutrophil, Biochem. J. 291: 825–831.PubMedGoogle Scholar
  172. Witztum, J., and Steinberg, D., 1991, Role of oxidized low density lipoprotein in atherogenesis, J Clin. Invest. 88: 1785–1792.PubMedCrossRefGoogle Scholar
  173. Wykle, R. L., Malone, B., and Snyder, F., 1980, Enzymatic synthesis of 1-alkyl-2-acetyl-sn-glycero-3phosphocholine, a hypotensive and platelet aggregating lipid, J. Biol. Chem. 268: 10256–10260.Google Scholar
  174. Wykle, R. L., Miller, C. H., Lewis, J. C., Schmitt, J. D., Smith, J. A., Surles, J. R., Piantadosi, C., and O’Flaherty, J. T., 1981, Stereospecific activity of 1–4alkyl-2–4acetyl-sn-glycero-3-phosphocholine and comparison of analogs in the degranulation of platelets and neutrophils, Biochem. Biophys. Res. Commun. 100: 1651–1658.PubMedCrossRefGoogle Scholar
  175. Yagi, K., 1984, Increased serum lipid peroxides initiate atherogenesis, BioEssays 1: 58–60.CrossRefGoogle Scholar
  176. Ye, R. D., Prossnitz, E. R., Zou, A., and Cochrane, C. G., 1991, Characterization of a human cDNA that encodes a functional receptor for platelet activating factor, Biochem. Biophys. Res. Commun. 180: 105–111.PubMedCrossRefGoogle Scholar
  177. Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M., 1985a, Thrombin stimulates the adherence of neutrophils to human endothelial cells in vitro, J Clin. Invest. 76: 2235–2246.PubMedCrossRefGoogle Scholar
  178. Zimmerman, G. A., McIntyre, T. M., and Prescott, S. M., 1985b. Production of platelet-activating factor by human vascular endothelial cells: Evidence for a requirement for specific agonists and modulation by prostacyclin, Circulation 76: 718–727.CrossRefGoogle Scholar
  179. Zimmerman, G. A., McIntyre, T. M., Mehra, M., and Prescott, S. M., 1990a, Endothelial cell-associated platelet-activating factor: A novel mechanism for signaling intercellular adhesion, J. Cell Biol. 110: 529–540.PubMedCrossRefGoogle Scholar
  180. Zimmerman, G. A., Whatley, R. E., McIntyre, T. M., Benson, D. M., and Prescott, S. M., 1990b, Endothelial cells for studies of platelet-activating factor and arachidonate metabolites, Methods Enzymol. 187: 520–535.PubMedCrossRefGoogle Scholar
  181. Zimmerman, G. A., Prescott, S. M., and McIntyre, T. M., 1992a, Platelet-activating factor: A fluid-phase and cell-mediator of inflammation, in: Inflammation: Basic Principles and Clinical Correlates U. I. Gallin and I. M. Goldstein, eds.), pp. 149–176, Raven Press, New York.Google Scholar
  182. Zimmerman, G. A., Prescott, S. M., and McIntyre, T. M., 1992b, Endothelial cell interactions with granulocytes: Tethering and signaling molecules, Immunol. Today 13: 93–100.PubMedCrossRefGoogle Scholar
  183. Zimmerman, G. A., Lorant, D. E., McIntyre, T. M., and Prescott, S. M., 1993, Juxtacrine intercellular signaling: Another way to do it, Am. J. Respir. Cell Mol. Biol. 9: 573–577.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ralph E. Whatley
    • 1
  • Guy A. Zimmerman
    • 2
  • Stephen M. Prescott
    • 3
    • 4
  • Thomas M. McIntyre
    • 5
  1. 1.Department of MedicineEast Carolina University School of MedicineGreenvilleUSA
  2. 2.Department of MedicineUniversity of Utah School of MedicineSalt Lake CityUSA
  3. 3.Departments of Medicine and BiochemistryNora Eccles Harrison Cardiovascular Research and Training InstituteSalt Lake CityUSA
  4. 4.Eccles Institute of Human GeneticsUniversity of Utah School of MedicineSalt Lake CityUSA
  5. 5.Departments of Medicine and BiochemistryUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations