Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 318))

Abstract

After a brief overview of the MCSCF (MultiConfiguration Self-Consistent-Field) method, a more detailed examination of the underlying model is undertaken. The problem of “multiple solutions” is examined with reference to the “symmetry-breaking” problem and with emphasis on single-state cases. It is argued that the most appropriate resolution of such problems is usually case-specific, and depends on the details of how the MCSCF wave function is being used to model the chemical system rather than on features characteristic of the MCSCF wave function itself. Finally, a recently introduced MCSCF wave function optimization method based on multidimensional trigonometric interpolation is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Shepard, in: “Ab Initio Methods in Quantum Chemistry II, Advances in Chemical Physics 69”, K. P. Lawley, ed., (Wiley, New York, 1987) pp. 63–200.

    Google Scholar 

  2. E. Dalgaard and P. Jorgensen, J. Chem. Phys..69, 3833 (1978).

    Article  CAS  Google Scholar 

  3. E. Dalgaard, Chem. Phys. Lett.65, 559 (1979).

    Article  CAS  Google Scholar 

  4. D. L. Yeager and P. Jørgensen, J. Chem. Phys.71, 755 (1979).

    Article  CAS  Google Scholar 

  5. D. J. Thouless. “The Quantum Mechanics of Many-Body Systems,” (Academic Press, New York, 1961). (see in particular pp. 25–27)

    Google Scholar 

  6. J. Olsen, D. L. Yeager, and P. Jørgensen, Adv. Chem. Phys.54,1 (1983).

    Article  CAS  Google Scholar 

  7. R. Shepard, I. Shavitt, and J. Simons, J. Chem. Phys..76,543 (1982).

    Article  CAS  Google Scholar 

  8. H. J. Aa. Jensen, P. Jørgensen, and H. Agren, J. Chem. Phys.87,451 (1987).

    Article  CAS  Google Scholar 

  9. P. G. Szalay, A. G. Császár, G. Fogarasi, A. Karpfen, and H. Lischka, J. Chem. Phys.93,1246 (1990).

    Article  CAS  Google Scholar 

  10. R. Shepard, I. Shavitt, R. M. Pitzer, D. C. Comeau, M. Pepper, H. Lischka, P. G. Szalay, R. Ahlrichs, F. B. Brown, and J.-G. Zhao, Int. J. Quantum. Chem.S22,149 (1988).

    Article  CAS  Google Scholar 

  11. P. E. M. Siegbahn, Chem. Phys. Lett.119,515 (1985).

    Article  CAS  Google Scholar 

  12. H.-J. Werner, in:Ab Initio Methods in Quantum Chemistry II, Advances in Chemical Physics 69”, K. P. Lawley, ed., (Wiley, New York, 1987) pp. 1–62.

    Google Scholar 

  13. H.-J. Werner and P. J. Knowles, Theor. Chim. Acta 78,175 (1990).

    Article  CAS  Google Scholar 

  14. R. Ahlrichs and P. Scharf, in: “Ab Initio Methods in Quantum Chemistry I, Advances in Chemical Physics 67”, K. P. Lawley, ed., (Wiley, New York, 1987) pp. 501–537.

    Google Scholar 

  15. A. Banerjee and J. Simons, Int. J. Quantum Chem.19,207 (1981).

    Article  CAS  Google Scholar 

  16. W. D. Laidig and R. J. Bartlett, Chem. Phys. Lett.104,424 (1984).

    Article  CAS  Google Scholar 

  17. M. R. Hoffmann and J. Simons, J. Chem. Phys.90,3671 (1989).

    Article  CAS  Google Scholar 

  18. M. A. Anderson and R. J. Cave, Chem. Phys.154,1 (1991).

    Article  CAS  Google Scholar 

  19. B. O. Roos, K. Anderson, and M. P. Falscher, Chem. Phys. Lett.192,5 (1992).

    Article  CAS  Google Scholar 

  20. E. R. Davidson and C. F. Bender, Chem. Phys. Lett.59,369 (1978).

    Article  CAS  Google Scholar 

  21. R. B. Murphy and R. P. Messmer, J. Chem. Phys.97,4170 (1992).

    Article  CAS  Google Scholar 

  22. E. A. Stahlberg, Multireference second- and third-order perturbation theory, in: “Application of Multireference Based Correlation Methods to the Study of Weak Bonding Interactions,” Dissertation, Department of Chemistry, The Ohio State University, Columbus, Ohio (1991).

    Google Scholar 

  23. K. K. Docken and J. Hinze, J. Chem. Phys. 57,4928 (1972).

    Article  CAS  Google Scholar 

  24. K. Ruedenberg, L. M. Cheung, and S. T. Elbert, Int. J. Quantum Chem.16,1069 (1979).

    Article  CAS  Google Scholar 

  25. R. Shepard, Theor.Chim. Acta 84,55 (1992).

    Article  CAS  Google Scholar 

  26. M. Frisch, I. N. Ragazos, M. A. Robb, and H. B. Schlegel, Chem. Phys. Lett.189,524 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shepard, R. (1994). A Discussion of Some Aspects of the MCSCF Method. In: Malli, G.L. (eds) Relativistic and Electron Correlation Effects in Molecules and Solids. NATO ASI Series, vol 318. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1340-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1340-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1342-5

  • Online ISBN: 978-1-4899-1340-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics