Skip to main content

Electronic Structure of Molecules, Clusters and Surfaces Using Ab Initio Relativistic Effective Core and Core/Valence Polarization Potentials

  • Chapter
Relativistic and Electron Correlation Effects in Molecules and Solids

Part of the book series: NATO ASI Series ((NSSB,volume 318))

  • 260 Accesses

Abstract

One of the most difficult problems that must be addressed in ab initio calculations of many-electron, multi-center wavefunctions is the prediction of accuracy. All procedures based on linear combinations of atomic orbitals to form molecular orbitals (LCAO-MO) in the context of Hartree-Fock (HF) and subsequent post-HF procedures such as configuration interaction (CI), many-body perturbation theory (MBPT) and its varients, must face such an assement.1 This is particularly true for the most commonly used methods, which involve choosing a basis set of finite size to define the LCAO-MOs. The use of Slater-type orbitals (STO) or primitive Cartesian Gaussian-type orbitals (GTO), most often incorporating some level of contraction (CGTOs) based on atomic self-consistent field (SCF) wavefunctions in molecular ab initio calculations has been extensively studied.1,2 The importance of choosing basis sets that are both carefully optimized and contain a sufficient number of functions cannot be overstated. Furthermore, once this basis set has been established, post-HF procedures must address the additional concern of size and quality of the subsequent one-electron SCF or multi-configuration (MCSCF) MO basis set and the set of MO electron configurations (in CI) or level of excitations (in MBPT) that define the many-electron wavefunction for the desired electronic state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See R. S. Mulliken and W. C. Ermler, Polvtatomic Molecules: Results of ab Initio Calculations, Academic Press, New York, 1981.

    Google Scholar 

  2. See R.S. Mulliken and W.C. Ermler, Diatomic Molecules: Results of ab Initio Calculations, Academic Press, New York, 1977.

    Google Scholar 

  3. R. J. Harrison and N. C. Handy, Chem. Phys. Lett. 95, 386 (1983).

    Article  CAS  Google Scholar 

  4. R. J. Harrison and N. C. Handy, Chem. Phys. Lett. 98, 97 (1983).

    Article  CAS  Google Scholar 

  5. R. J. Harrison and N. C. Handy, Chem. Phys. Lett. 123, 321 (1986).

    Article  CAS  Google Scholar 

  6. C. W. Bauschlicher, S. R. Langhoff, P. R. Taylor, N. C. Handy and P. J. Knowles, J. Chem. Phys. 85, 1469 (1986).

    Article  CAS  Google Scholar 

  7. See L. Szasz, Pseudopotential Theory of Atoms and Molecules, Wiley, New York, 1985.

    Google Scholar 

  8. M. Krauss and W. J. Stevens, Ann. Rev. Phys. Chem. 35, 357 (1984)

    Article  CAS  Google Scholar 

  9. P. A. Christiansen, W. C. Ermler, and K. S. Pitzer, Ann. Rev. Phys. Chem. 36, 407 (1985)

    Article  CAS  Google Scholar 

  10. K. Balasubramanian, J. Phys. Chem. 93, 6585 (1989).

    Article  CAS  Google Scholar 

  11. W. C. Ermler, R. B. Ross, and P. A. Christiansen, Adv. Quantum Chem. 19, 139 (1988).

    Article  CAS  Google Scholar 

  12. P. A. Christiansen, Y. S. Lee and K. S. Pitzer, J. Chem. Phys. 71, 4445 (1979).

    Article  CAS  Google Scholar 

  13. J.P. Desclaux, Computer Phys. Commun. 9, 31 (1975).

    Article  Google Scholar 

  14. Y. S. Lee, W. C. Ermler, and K. S. Pitzer, J. Chem. Phys. 67, 5861 (1977).

    Article  CAS  Google Scholar 

  15. Y.S. Lee, W.C. Ermler and K.S. Pitzer, J. Chem. Phys. 73, 360 (1980).

    Article  CAS  Google Scholar 

  16. P. Hafner and W. H. E. Schwartz, Chem. Phys. Lett. 65, 537 (1979).

    Article  CAS  Google Scholar 

  17. W. C. Ermler, Y. S. Lee, P. A. Christiansen, and K. S. Pitzer, Chem. Phys. Lett. 81, 70 (1981).

    Article  CAS  Google Scholar 

  18. R. M. Pitzer and N. W. Winter, J. Phys. Chem. 92, 3061 (1988).

    Article  CAS  Google Scholar 

  19. (a) L. F. Pacios and P. A. Christiansen, J. Chem. Phys. 82, 2664 (1985)

    Article  Google Scholar 

  20. (b) M. M. Hurley, L. F. Pacios, P. A. Christiansen, R. B. Ross, and W. C. Ermler, ibid. 84, 6840 (1986)

    CAS  Google Scholar 

  21. (c) L. A. LaJohn, P. A. Christiansen, R B. Ross, T. Atashroo, and W. C. Ermler, ibid. 87, 2812 (1987)

    CAS  Google Scholar 

  22. (d) R. B. Ross, J. M. Powers, T. Atashroo, W. C. Ermler, L. A. LaJohn and P. A. Christiansen, ibid., 93, 6654 (1990)

    CAS  Google Scholar 

  23. (e) R. B. Ross, S. Gayen and W. C. Ermler, to be published

    Google Scholar 

  24. (f) W. C. Ermler, R. B. Ross and P. A. Christiansen, Intern. J. Quantum Chem. 40, 829 (1991).

    Article  CAS  Google Scholar 

  25. H. J. Werner and W. Meyer, Phys. Rev. A13, 13 (1976).

    Article  CAS  Google Scholar 

  26. L. G. M. Pettersson, P. E. M. Siegbahn and S. Ismail, Chem. Phys. 82, 355 (1985).

    Article  Google Scholar 

  27. P. A. Christiansen, Chem. Phys. Lett. 127, 50 (1986).

    Article  CAS  Google Scholar 

  28. W. Müller, J. Flesch, and W. Meyer, J. Chem. Phys. 80, 3297 (1984).

    Article  Google Scholar 

  29. P. A. Christiansen, K. Balasubramanian, and K. S. Pitzer, J. Chem. Phys. 76,5087 (1982).

    Article  CAS  Google Scholar 

  30. L. LaJohn, Ph.D. dissertation, Clarkson University (1989).

    Google Scholar 

  31. R. M. Pitzer, private communication.

    Google Scholar 

  32. For example, J. Paldus, J. Čížek, and I. Shavitt, Phys. Rev. A5, 50 (1972).

    Article  Google Scholar 

  33. M. M. Marino, W. C. Ermler, C. W. Kern and V. E. Bondybey, J. Chem. Phys. 96, 3756 (1992).

    Article  CAS  Google Scholar 

  34. W.B. England, W.C. Ermler and A.C. Wahl, J. Chem. Phys. 66, 2336 (1977).

    Article  CAS  Google Scholar 

  35. C.E. Moore, Atomic Energy Levels, Natl. Bur. Stand. (US) Circ. No. 467 (U.S. GPO, Washington, D.C., 1971), Vol. 1.

    Google Scholar 

  36. K. Pak, W.C. Ermler, C.W. Kern and V.E. Bondybey, J. Cluster Sci. 2, 19 (1991).

    Article  CAS  Google Scholar 

  37. R.B. Ross, W.C. Ermler, V. Luana, R.M. Pitzer and C.W. Kern, Intern. J. Quantum Chem. 24S, 225 (1990).

    Article  CAS  Google Scholar 

  38. R.B. Ross, W.C. Ermler, C.W. Kern and R.M. Pitzer. Intern. J. Quantum Chem. 41, 733 (1992).

    Article  CAS  Google Scholar 

  39. W.C. Ermler, C.W. Kern, R.M. Pitzer and N.W. Winter, J. Chem. Phys. 84, 3937 (1986).

    Article  CAS  Google Scholar 

  40. R.B. Ross, W.C. Ermler, R.M. Pitzer and C.W. Kern, Chem. Phys. Lett. 134, 115 (1987).

    Article  CAS  Google Scholar 

  41. W.C. Ermler, R.B. Ross, C.W. Kern, R.M. Pitzer and N.W. Winter, J. Phys. Chem. 92,3042(1988).

    Google Scholar 

  42. R.B. Ross, C.W. Kern, R.M. Pitzer, W.C. Ermler and N.W. Winter, J. Phys. Chem., 94,7771 (1990).

    Article  CAS  Google Scholar 

  43. C.C.J. Roothaan, Rev. Mod. Phys. 33, 179 (1960).

    Article  Google Scholar 

  44. R.M. Pitzer, J. Chem. Phys. 58, 3111 (1973).

    Article  Google Scholar 

  45. R.G. Wyckoff, Crystal Structures, 2nd Ed. (Interscience, New York, 1974).

    Google Scholar 

  46. J.C. Slater, Quantum Theory of Atomic Structure, Vol. 1 (McGraw-Hill, New York, 1960).

    Google Scholar 

  47. D. Neumann and J.W. Moskowitz, J. Chem. Phys. 49, 2056 (1968).

    Article  CAS  Google Scholar 

  48. R.S. Mulliken, J. Chem. Phys. 23, 1833 (1955).

    Article  CAS  Google Scholar 

  49. P. Blaha and K. Schwartz, J. Phys. F. 17, 899 (1987).

    Article  CAS  Google Scholar 

  50. G.S. Tompa, M. Seidl, W.C. Ermler and W.E. Carr, Surf. Sci. 185, L453 (1987).

    Article  Google Scholar 

  51. J. Stapelfeldt, J. Woermer and T. Moeller, Phys. Rev. Lett. 62, 98 (1989).

    Article  CAS  Google Scholar 

  52. C. Hayashi, Phys. Today 40 (No. 12), 44 (1987).

    Article  CAS  Google Scholar 

  53. T. Inoshita, S. Ohnishi and A. Oshiyama, Phys. Rev. Lett. 57, 2560 (1986).

    Article  CAS  Google Scholar 

  54. D.S. Chemla and D.A.B. Miller, Opt. Lett. 11, 522 (1986).

    Article  CAS  Google Scholar 

  55. T. Takagahara, Phys. Rev. B. 36, 9293 (1987).

    Article  Google Scholar 

  56. M.M. Marino, M. Sawamura, W.C. Ermler and C.J. Sandroff, Chem. Phys. Lett. 163, 202 (1989).

    Article  CAS  Google Scholar 

  57. G. Harbeke and E. Tosatti, RCA Rev. 36, 40 (1975).

    CAS  Google Scholar 

  58. C.J. Sandroff, S.P. Kelty and D.M. Hwang, J. Chem. Phys. 85, 5337 (1986).

    Article  CAS  Google Scholar 

  59. M.M. Marino, M. Sawamura, W.C. Ermler and C.J. Sandroff, Phys. Rev. B. 41, 1270 (1990).

    Article  CAS  Google Scholar 

  60. M. Sawamura and W.C. Ermler J. Phys. Chem. 94,7805 (1990).

    Article  CAS  Google Scholar 

  61. M.G. Burt and V. Heine, Solid State Phys. 11, 961 (1978).

    Article  CAS  Google Scholar 

  62. V.A. Simon, Z. Anorg. Allg. Chem. 395, 301 (1973).

    Article  CAS  Google Scholar 

  63. P. Wang and W. C. Ermler, J. Chem. Phys. 94, 7231 (1991).

    Article  CAS  Google Scholar 

  64. P.E. Gregory, P. Chye, H. Sunami and W.E. Spicer, J. Appl. Phys. 46, 3525 (1975).

    Article  CAS  Google Scholar 

  65. J.B. Taylor and I. Langmuir, Phys. Rev. 44, 423 (1933).

    Article  CAS  Google Scholar 

  66. L.W. Swanson and R.W. Strayer, J. Chem. Phys. 48, 2421 (1968).

    Article  CAS  Google Scholar 

  67. R. E. Weber and W. T. Peria, Surface Sci. 14, 13 (1969).

    Article  CAS  Google Scholar 

  68. M. Kiskinova, G. Rangelov and L. Surnev, Surface Sci. 172, 57 (1986).

    Article  CAS  Google Scholar 

  69. M. Seidl and A. Pargellis, Phys. Rev. 26, 1 (1982).

    CAS  Google Scholar 

  70. M.M. Marino and W.C. Ermler, unpublished results.

    Google Scholar 

  71. M.M. Marino, W.C. Ermler, G.S. Tompa and M. Seidl, Surf. Sci. 208, 189 (1989).

    Article  CAS  Google Scholar 

  72. T.H. Dunning, jr., J. Chem. Phys. 53, 2823 (1970)

    Article  CAS  Google Scholar 

  73. T.H. Dunning, jr., ibid, 55, 3958 (1971).

    Article  CAS  Google Scholar 

  74. E. Wimmer, A.J. Freeman, J.R. Hiskes and A.M. Karo, Phys. Rev. B 28, 3074 (1983).

    Article  CAS  Google Scholar 

  75. D.M. Riffe, G.K. Wertheim and P.H. Citrin, Phys. Rev. Lett. 64, 574 (1989).

    Google Scholar 

  76. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature (London) 318,162 (1985).

    Article  CAS  Google Scholar 

  77. J. R. Heath, S. C. O’Brien, Q. Zhang, Y. Liu, R. G. Curl, H. W. Kroto, F. K. Tittel and R. E. Smalley, J. Am. Chem. Soc. 107, 7779 (1985)

    Article  CAS  Google Scholar 

  78. A. H. H. Chang, W. C. Ermler and R. M. Pitzer, J. Phys. Chem. 95, 9288 (1991).

    Article  CAS  Google Scholar 

  79. A. H. H. Chang, W. C. Ermler and R. M. Pitzer, J. Chem. Phys. 94, 5004 (1991).

    Article  CAS  Google Scholar 

  80. S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).

    Article  Google Scholar 

  81. N. W. Wallace, J. P. Blaudeau and R. M. Pitzer, Int. J. Quantum Chem., to be published.

    Google Scholar 

  82. D. L. Lichtenberger, K. W. Nebesny, C. D. Ray, D. R. Huffman and L. d. Lamb, Chem. Phys. Lett. 176, 203 (1991).

    Article  CAS  Google Scholar 

  83. P. A. Limbach, L. Schweikhard, K. A. Cowen, M. T. McDermott, A. G. Marshall and J. V. Coe, J. Am. Chem. Soc. 113, 6795 (1991).

    Article  CAS  Google Scholar 

  84. M. M. Marino and W. C. Ermler, Chem. Phys. Lett., to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ermler, W.C., Marino, M.M. (1994). Electronic Structure of Molecules, Clusters and Surfaces Using Ab Initio Relativistic Effective Core and Core/Valence Polarization Potentials. In: Malli, G.L. (eds) Relativistic and Electron Correlation Effects in Molecules and Solids. NATO ASI Series, vol 318. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1340-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1340-1_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1342-5

  • Online ISBN: 978-1-4899-1340-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics