Skip to main content

Transport Properties

  • Chapter

Abstract

Consider a gas in a nonequilibrium steady state with a constant flow in one direction (for example, between two parallel plates, one heated at T 1 and the second at T 2, with T 1 > T 2). Energy will flow from the plate at T 1 to the plate at T 2. The temperature gradient in the gas is the driving force and the physical quantity that is transported in this process is energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Bibliography

  • Chapman, S. and T. Cowling, The Mathematical Theory of Non-Uniform Gases, New York: Cambridge University Press, 1952.

    Google Scholar 

  • Child, M. S., Molecular Collision Theory, New York: Academic Press, 1974.

    Google Scholar 

  • Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, 2nd ed., New York: Wiley, 1964.

    Google Scholar 

  • Mitchner, M. and C. H. Kruger Jr., Partially Ionized Gases, New York: Wiley, 1973.

    Google Scholar 

  • Pauly, H., Chapter 4 in Atom Molecule Collision Theory (B. B. Bernstein, ed.), New York and London: Plenum Press, 1979.

    Google Scholar 

  • Reif, F., Fundamentals of Statistical and Thermal Physics, New York: McGraw-Hill, 1988.

    Google Scholar 

References

  1. C. Gorse, “Contribution au calcul des propriétés de transport des plasmas des mélanges Ar-H2 et Ar-N2,” Thèse 3e cycle (University of Limoges, France, 1975).

    Google Scholar 

  2. IUPAC Subcommission on Plasma Chemistry, “Thermodynamic and Transport Properties of Pure and Mixed Thermal Plasmas at LTE,” Pure Appl. Chem. 6 (1982): 1221.

    Google Scholar 

  3. A. Eucken, Phys. Z. 14 (1913): 324.

    CAS  Google Scholar 

  4. E. A. Mason, and L. Monchick, J. Chem. Phys. 36 (1962): 1622.

    Article  CAS  Google Scholar 

  5. E. Mason, J. T. Vanderslice, and J. M. Yos, Phys. Fluids 2 (1959): 688.

    Article  CAS  Google Scholar 

  6. C. Nyeland and E. M. Mason, Phys. Fluids 10 (1967): 985.

    Article  CAS  Google Scholar 

  7. H. Grad, in Proceedings of the 5th International Conference on Ionization Phenomena in Gases, Munich (1961).

    Google Scholar 

  8. W. F. Athye, A Critical Evaluation of Methods for Calculating Transport Coefficients of Partially and Fully Ionized Gases, NASA TN, ND-2611 (1965).

    Google Scholar 

  9. R. S. Devoto, Phys. Fluids 9 (1966): 1230.

    Article  CAS  Google Scholar 

  10. R. S. Devoto, Phys. Fluids 10 (1967): 2105.

    Article  CAS  Google Scholar 

  11. R. S. Devoto and C. P. Li, J. Plasma Phys.2 (1968): 17.

    Article  CAS  Google Scholar 

  12. R. S. Devoto, AIAA J. 7 (1979): 789.

    Google Scholar 

  13. R. S. Devoto, Phys. Fluids 16 (1973): 616.

    Article  CAS  Google Scholar 

  14. R. S. Devoto, “The Transport Properties of a Partially Ionized Monoatomic Gas,” Ph.D. Thesis (Stanford University, 1965).

    Google Scholar 

  15. R. M. Chmieleski, “Transport Properties of a Nonequilibrium Partially Ionized Gas,” Ph.D. Thesis (Stanford University, 1967).

    Google Scholar 

  16. C. Bonnefoi, “Contribution à l’étude des méthodes de résolution de l’équation de Boltzmann dans un plasma à deux températures: exemple le mélange Ar-H2,” Thèse de doctorat d’Etat (University of Limoges, France, May 1983).

    Google Scholar 

  17. J. Aubreton, “Étude des propriétés thermodynamiques et de transport dans les plasmas thermiques à l’équilibre et hors équilibre thermodynamique. Applications aux plasmas de mélange Ar-H2, Ar-O2,” Thèse de doctorat d’État (University of Limoges, France, 22 February 1985).

    Google Scholar 

  18. J. Aubreton and P. Fauchais, Rev. Phys. Appl. 18 (1983): 51.

    Article  CAS  Google Scholar 

  19. C. Muckenfus and C. F. Curtiss, J. Chem. Phys. 29 (1958): 1273.

    Article  Google Scholar 

  20. J. N. Butler and R. S. Brokaw, J. Chem. Phys. 26 (1957): 1636.

    Article  CAS  Google Scholar 

  21. W. E. Meador and L. D. Stanton, Phys. Fluids 8 (1965): 1694.

    Article  Google Scholar 

  22. C. Bonnefoi, J. Aubreton, and J. M. Mexmain, Z. Naturforsch. A 40a (1085): 885.

    Google Scholar 

  23. H. W. Emmons, Modem Developments in Heat Transfer (W. Ibelee, ed.) (New York: Academic Press, 1963).

    Google Scholar 

  24. J. Lesinski and M. Boulos. “Thermodynamic and Transport Properties of Argon, Nitrogen and Oxygen at Atmospheric Pressure Over the Temperature Range 300–30,000 K,” Internal Report (University of Sherbrooke, Quebec, Canada).

    Google Scholar 

  25. B. Pateyron, J. Aubreton, M. F. Elchinger, G. Delluc, and P. Fauchais, “Thermodynamic and Transport Properties of N2, O2, H2, Ar, He and their mixtures,” Internal Report LMCTS (University of Limoges, France, 1986).

    Google Scholar 

  26. B. Pateyron, M. F. Elchinger, G. Delluc, and P. Fauchais, Thermodynamic and Transport Properties of Air and Air-Cu at Atmospheric Pressure, Internal Report, LMCTS (University of Limoges, 1990).

    Google Scholar 

  27. B. Pateyron, M. F. Elchinger, G. Delluc, and P. Fauchais, “Thermodynamic and Transport Properties of Ar-H2 and Ar-He Plasma Gases for Spraying at Atmospheric Pressure—Part 1: Properties of the Mixtures,” Plasma Chemistry, Plasma Processing, submitted.

    Google Scholar 

  28. J. Mostaghimi-Tehrani and E. Pfender, Plasma Chemistry, Plasma Processing 4(2) (1984): 129.

    Article  CAS  Google Scholar 

  29. H. Wilhelmi, W. Lyhs, and E. Pfender, Plasma Chemistry, Plasma Processing 4(4) (1984): 315.

    Article  CAS  Google Scholar 

  30. E. Bourdin, M. Boulos, and P. Fauchais, Int. J. Heat Mass Transfer 26 (1983): 567.

    Article  CAS  Google Scholar 

  31. C. R. Wilke, J. Chem. Phys. 18 (1950): 517.

    Article  CAS  Google Scholar 

  32. E. Richely and D. T. Tuma, J. Appl. Phys. 53 (1982): 8537.

    Article  Google Scholar 

  33. K. C. Hsu and E. Pfender, “Calculation of Thermodynamics and Transport Properties of a Two-Temperature Argon Plasma,” Proceedings of the Fifth International Symposium on Plasma Chemistry, Vol. 1 (Heriot-Watt University, Edinburgh, 1981): 144.

    Google Scholar 

  34. D. Kannappan, and T. K. Bose, Phys. Fluids 16 (1973): 491.

    Article  Google Scholar 

  35. M. Capitelli, C. Gorse, and P. Fauchais, J. Chim. Phys. 7 (1976): 755.

    Google Scholar 

  36. I. Amdur and E. A. Mason, Phys. Fluids 1 (1958): 370.

    Article  CAS  Google Scholar 

  37. P. P. Kulik, I. G. Panevin, and V. I. Khvesyuk, Teplofizika Vysokikh Temperatur 1 (1963): 56.

    CAS  Google Scholar 

  38. P. P. Kulik, Teplofizika Vysokikh Temperatur 9 (1971): 431.

    CAS  Google Scholar 

  39. P. W. Schreiber, A. M. Hunter, and K. R. Benedetto, AIAA J. 10 (1972): 670.

    Article  CAS  Google Scholar 

  40. N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases (Hemisphere Publishing Corporation, Washington, London, 1975).

    Google Scholar 

  41. D. P. Aeschliman and A. B. Cambell, Phys. Fluids 13 (1970): 2466.

    Article  CAS  Google Scholar 

  42. A. Kanzawa and I. Kimura, AIAA J. 5, no. 7 1315 (1967).

    Article  Google Scholar 

  43. C. F. Bonilla, S. J. Wang, and M. Weiner, “The Viscosity of Steam, Heavy-Water Vapor, and Argon at Atmospheric Pressure up to High Temperatures,” Transactions of the ASME (1956): 1285.

    Google Scholar 

  44. E. I. Asinovskii, E. V. Drokhanova, A. V. Kirillin, and A. N. Lagarkov, Teplofizika Vysokikh Temperatur 5 (1967): 739.

    CAS  Google Scholar 

  45. M. N. Bahadori and S. L. Soo, Int. J. Heat Mass Transfer 9, 17 (1966).

    Article  CAS  Google Scholar 

  46. M. W. Emmons, Phys. Fluids 10 (1967): 1125.

    Article  CAS  Google Scholar 

  47. Y. N. Belyaev and V. B. Leonas, Teplofizika Vysokikh Temperatur 5 (1967): 1123.

    CAS  Google Scholar 

  48. J. T. Vanderslice, S. Weissmann, E. A. Mason, and R. J. Fallon, Phys. Fluids 5 (1962): 155.

    Article  CAS  Google Scholar 

  49. C. F. Knopp and A. B. Cambell, Phys. Fluids 9 (1966): 989.

    Article  CAS  Google Scholar 

  50. D. L. Jordan and J. D. Swift, Int. J. Electron. 35 (1973): 595.

    Article  CAS  Google Scholar 

  51. J. C. Morris, R. P. Rudis, and J. M. Yos, Phys. Fluids 13 (1970): 608.

    Article  CAS  Google Scholar 

  52. W. Hermann and E. Schade, Z. Phys. 233 (1970): 333.

    Article  CAS  Google Scholar 

  53. U. Plantikow, Z. Phys. 237 (1970): 388.

    Article  CAS  Google Scholar 

  54. K. S. Yun, S. Weissman, and E. A. Mason, Phys. Fluids 5 (1962): 672.

    Article  CAS  Google Scholar 

  55. F. Burhorn, Zeitschrift Für Physik 155, 42 (1959).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boulos, M.I., Fauchais, P., Pfender, E. (1994). Transport Properties. In: Thermal Plasmas. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1337-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1337-1_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1339-5

  • Online ISBN: 978-1-4899-1337-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics