Skip to main content

Molecular Dynamics Computer Simulations of Aqueous Solution/Platinum Interface

  • Chapter
Theoretical and Computational Approaches to Interface Phenomena

Abstract

A detailed molecular level description of structure and dynamics of water and aqueous solutions next to metallic surfaces is of fundamental importance for electrochemistry, catalysis, and corrosion studies.1 Structural details about the water monolayer/metal interface can be obtained using different experimental techniques.2 In the case of bulk aqueous solution/metal interface, where very little of molecular level information is available from experiment, computer simulations can play a very significant role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Lipkowski, and P.N. Ross. “Structure of Electrified Interfaces,” VCH, New York, 1993.

    Google Scholar 

  2. P.A. Thiel, and T.E. Madey, Surf. Sci. Rept. 7:211 (1987).

    Article  CAS  Google Scholar 

  3. B. Jönsson, Chem. Phys. Lett. 82:520 (1981).

    Article  Google Scholar 

  4. M. Marchesi, Chem. Phys. Lett. 97:224 (1983).

    Article  CAS  Google Scholar 

  5. G. Barabino, C. Gavotti, and M. Marchesi, Chem. Phys. Lett. 104:478 (1984).

    Article  CAS  Google Scholar 

  6. C.Y. Lee, J.A. McCammon, and P. Rossky, J. Chem. Phys. 80:4448 (1984).

    Article  CAS  Google Scholar 

  7. N.G. Parsonage, and D. Nicholson, J. Chem. Soc. Faraday Trans. 2. 82:1521 (1986).

    Article  CAS  Google Scholar 

  8. N.G. Parsonage, and D. Nicholson, J. Chem. Soc. Faraday Trans. 2. 83:663 (1987).

    Article  CAS  Google Scholar 

  9. F.H. Stillinger, and A. Rahman, J. Chem. Phys. 60:1545 (1974).

    Article  CAS  Google Scholar 

  10. J.P. Valleau, and A.A. Gardner, J. Chem. Phys. 86:4162 (1987).

    Article  CAS  Google Scholar 

  11. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R. Impey, and M.L. Klein, J. Chem. Phys. 79:926 (1983).

    Article  CAS  Google Scholar 

  12. A.A. Gardner, and J.P. Valleau, J. Chem. Phys. 86:4171 (1987).

    Article  CAS  Google Scholar 

  13. S. Holloway, and K.H. Bennemann, Surf. Sci. 101:327 (1980).

    Article  CAS  Google Scholar 

  14. M.W. Ribarsky, W.D. Luedtke, and U. Landman, Phys. Rev. B. 32:1430 (1985).

    Article  CAS  Google Scholar 

  15. E. Spohr, and K. Heinzinger, Ber. Bunsenges. Phys. Chem. 92:1358 (1988).

    CAS  Google Scholar 

  16. E. Spohr, J. Phys. Chem. 93:6171 (1989).

    Article  CAS  Google Scholar 

  17. K. Foster, K. Raghavan, and M. Berkowitz, Chem. Phys. Lett. 162:32 (1989).

    Article  CAS  Google Scholar 

  18. K. Raghavan, K. Foster, K. Motakabbir, and M. Berkowitz, J. Chem.Phys. 94:2110 (1991).

    Article  CAS  Google Scholar 

  19. H.J.C. Berendsen, J.R. Grigera, and T.P. Straatsma, J. Phys. Chem. 91:6269 (1987).

    Article  CAS  Google Scholar 

  20. O. Ohtaki, and T. Radnai, Chem. Rev. 93:1157 (1993).

    Article  CAS  Google Scholar 

  21. H. Sellers, and P. Sudhakar, J. Chem. Phys. 97:6644 (1992).

    Article  CAS  Google Scholar 

  22. H. Sellers, J. Chem. Phys. 98:627 (1993).

    Article  CAS  Google Scholar 

  23. H. Yang, and J.L. Whitten, Surf. Sci. 223:131 (1991).

    Article  Google Scholar 

  24. J. Seitz-Beywl, M. Poxleitner, M. Probst, and K. Heinzinger, Int. J. Quant. Chem. 42:1141 (1992).

    Article  CAS  Google Scholar 

  25. K. Raghavan, K. Foster, and M. Berkowitz, Chem. Phys. Lett. 177:426 (1991).

    Article  CAS  Google Scholar 

  26. L. Perera, and M. Berkowitz, J. Phys. Chem. 97:13803 (1993).

    Article  CAS  Google Scholar 

  27. M. Wilson, A. Pohorille, and L. Pratt, J. Chem. Phys. 90:5211 (1989).

    Article  CAS  Google Scholar 

  28. D. Rose, and I. Benjamin, J. Chem. Phys. 95:6856 (1991).

    Article  CAS  Google Scholar 

  29. E. Spohr, Chem. Phys. Lett. 207:214 (1993).

    Article  CAS  Google Scholar 

  30. J. Glosli, and M. Philpott, J. Chem Phys. 96:6962 (1992).

    Article  CAS  Google Scholar 

  31. J. Glosli, and M. Philpott, J. Chem Phys. 98:9995 (1993).

    Article  CAS  Google Scholar 

  32. M. Lefleur, M. Pigeon, M. Pezolet, and J.-P. Caille, J. Phys. Chem. 93:1522 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Berkowitz, M.L., Perera, L. (1994). Molecular Dynamics Computer Simulations of Aqueous Solution/Platinum Interface. In: Sellers, H.L., Golab, J.T. (eds) Theoretical and Computational Approaches to Interface Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1319-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1319-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1321-0

  • Online ISBN: 978-1-4899-1319-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics