Skip to main content

Density Functional Description of Metal-Metal and Metal-Ligand Bonds

  • Chapter
Theoretical and Computational Approaches to Interface Phenomena

Abstract

Problems related to surfaces (such as the catalytic processes which often involve metal-ligand interactions) present considerable challenge to computational scientists. From the point of view of solid state physics, difficulties arise because of the low symmetry, compared to bulk materials, of the relevant model systems. From the point of view of chemistry, difficulties arise from the sheer number of atoms needed for clusters or supermolecules to model realistically systems of interest. These difficulties are compounded when transition metal atoms are involved because of the large number of valence electrons, the importance of electron correlation, spin polarization effects, etc. Taken together these impose severe computational restrictions for the treatment of these many-electron systems. As we will show in this contribution, density functional theory (DFT) is a practical first-principles approach for the study of the electronic structure of large and complicated systems and also a very useful tool for the study of interactions between ligands and metals in various states of aggregation (atoms, clusters, and infinite surfaces). DFT has been widely used in solid state physics since the introduction of the Xα method by Slater in the early 50’s[1]. About twenty years later, in the early 70’s, the first DFT method generally applicable to finite systems of interest for chemistry was devised by Slater and Johnson[2]. Over the following twenty years, DFT methods in chemistry have gradually evolved to include many of the standard features of ab initio methods: basis sets, algorithms for geometry optimization, etc.... In parallel, more sophisticated treatments of exchange and correlation were developed. Indced, the use of non-local functional allows, in many cases, quantitative predictions of total energy differences (binding energies, ionization potentials, etc.). With these advances, DFT has gained much popularity recently and there has been an explosive growth in the number of DFT applications to chemistry in the last two or three years[3]. In electronic structure theory, the study of surfaces is, in a sense, at the interface of physics and chemistry: insight can be gained both from few-atom systems and from infinite ideal surfaces. We think that it is profitable to take both points of view and to study systems of any size within a single conceptual framework and with consistent numerical methods. In our work, we use the conceptual framework of DFT and the numerical methods implemented in the program deMon. We approach the subject from a “chemical” point of view and the applications will follow the reverse order of historical development of DFT: from systems involving very few atoms, to clusters, and finally to infinite surfaces and the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Slater, The Self-Consistent Field For Molecules and Solids, vol. 4, McGraw-Hill, New-York, 1974.

    Google Scholar 

  2. K. H. Johnson, Adv. Quantum Chem., 7, 143 (1973).

    Article  CAS  Google Scholar 

  3. There are too many recent applications of DFT to chemistry to cite them all, however, the following references provide a good sample of properties and molecular systems:.

    Google Scholar 

  4. F. Sim, D. Salahub, S. Chin, and M. Dupuis, J. Chem. Phys. 95, 4317 (1991).

    Article  CAS  Google Scholar 

  5. G. Fitzgerald and J. Andzelm, J. Phys. Chem. 95, 10531 (1991).

    Article  CAS  Google Scholar 

  6. J. Andzelm and E. Wimmer, J. Chem. Phys. 96, 1280 (1992).

    Article  CAS  Google Scholar 

  7. R. Fournier and A. E. DePristo, J. Chem. Phys. 96, 1183 (1992).

    Article  CAS  Google Scholar 

  8. F. Sim, A. St-Amant, I. Pápai, and D. R. Salahub, J. Am. Chem. Soc. 114, 4391 (1992).

    Article  CAS  Google Scholar 

  9. L. Fan and T. Ziegler, J. Am. Chem. Soc. 114, 10890 (1992).

    Article  CAS  Google Scholar 

  10. A. M. Rappe, J. D. Joannopoulos, and P. A. Bash, J. Am. Chem. Soc. 114, 6466 (1992).

    Article  CAS  Google Scholar 

  11. D. A. Dixon and J. L. Gole, Chem. Phys. Lett. 189, 390 (1992).

    Article  CAS  Google Scholar 

  12. J. Andzelm, C. Sosa, and R. A. Eades, J. Phys. Chem. 97, 4664 (1993).

    Article  CAS  Google Scholar 

  13. N. C. Handy, C. W. Murray, and R. D. Amos, J. Phys. Chem. 97, 4392 (1993).

    Article  CAS  Google Scholar 

  14. R. D. Amos, C. W. Murray, and N. C. Handy, Chem. Phys. Lett. 202, 489 (1993).

    Article  CAS  Google Scholar 

  15. V. Barone, C. Adamo, and N. Russo, Chem. Phys. Lett. 212, 5 (1993).

    Article  CAS  Google Scholar 

  16. T. A. Holme and T. N. Truong, Chem. Phys. Lett. 215, 53 (1993).

    Article  CAS  Google Scholar 

  17. C. Sosa, C. Lee, G. Fitzgerald, and R. A. Eades, Chem. Phys. Lett. 211, 265 (1993).

    Article  CAS  Google Scholar 

  18. L. A. Eriksson, S. Lunell, and R. J. Boyd, J. Am. Chem. Soc. 115, 6896 (1993).

    Article  CAS  Google Scholar 

  19. D. P. Chong and A. V. Bree, Chem. Phys. Lett. 210, 443 (1993).

    Article  CAS  Google Scholar 

  20. J. Guan, P. Duffy, J. T. Carter, D. P. Chong, K. C. Casida, M. E. Casida, and M. Wrinn, J. Chem. Phys. 98, 4753 (1993).

    Article  CAS  Google Scholar 

  21. H. Burghgraef, A. P. Jansen, and R. A. van Santen, J. Chem. Phys. 98, 8810 (1993).

    Article  CAS  Google Scholar 

  22. C. Sosa and C. Lee, J. Chem. Phys. 98, 8004 (1993).

    Article  CAS  Google Scholar 

  23. G. L. Gutsev, J. Chem. Phys. 98, 7072 (1993).

    Article  CAS  Google Scholar 

  24. C. W. Murray, N. C. Handy, and R. D. Amos, J. Chem. Phys. 98, 7145 (1993).

    Article  CAS  Google Scholar 

  25. D. P. Chong and C. Y. Ng, J. Chem. Phys. 98, 759 (1993).

    Article  CAS  Google Scholar 

  26. C. Lee, G. Fitzgerald, and W. Yang, J. Chem. Phys. 98, 2971 (1993).

    Article  CAS  Google Scholar 

  27. L. Deng, T. Ziegler, and L. Fan, J. Chem. Phys. 99, 3823 (1993).

    Article  CAS  Google Scholar 

  28. V. G. Malkin, O. L. Malkina, and D. It. Salahub, Chem. Phys. Lett. 204, 80, (1992).

    Article  Google Scholar 

  29. L. A. Eriksson, V. G. Malkin, O. L. Malkina, and D. It. Salahub, J. Chem. Phys. 99, 9756 (1993).

    Article  CAS  Google Scholar 

  30. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  31. D. R. Salahub in: Metal-Ligand Interactions: From Atoms, to Clusters, to Surfaces, Eds. D. R. Salahub and N. Russo, NATO ASI, Kluwer Academic Publ., Dordrecht, 1992.

    Chapter  Google Scholar 

  32. H. Sambe, and R. H. Felton, J. Chem. Phys. 62, 1122 (1975).

    Article  CAS  Google Scholar 

  33. B. I. Dunlap, J. W. D. Connolly, and J. R. Sabin, J. Chem. Phys. 71, 3396, 4993 (1979).

    Article  CAS  Google Scholar 

  34. A. St-Amant and D. It. Salahub, Chem. Phys. Lett. 169, 387 (1990).

    Article  CAS  Google Scholar 

  35. D. R. Salahub, R. Fournier, P. Mlynarski, I. Papai, A. St.-Amant, and J. Ushio, in Density Functional Methods in Chemistry, edited by J. Labanowski and J. Andzelm (Springer, New York, 1991).

    Google Scholar 

  36. A. D. Becke, J. Chem. Phys. 88, 2547, (1988).

    Article  CAS  Google Scholar 

  37. C. Daul, A. Goursot, and D. R. Salahub in: NATO ARW Proceedings on “Grid Quantum Calculations”, C. Leforestier, ed., 1993, in press.

    Google Scholar 

  38. S. Obara and A. Saika, J. Chem. Phys. 84 3963 (1986).

    Article  CAS  Google Scholar 

  39. P. M. Boerrigter, G. te Velde and E. J. Baerends, Int. J. Quantum Chem., 33, 87 (1988).

    Article  CAS  Google Scholar 

  40. L. Versluis and T. Ziegler, J. Chem. Phys., 88, 322 (1988).

    Article  CAS  Google Scholar 

  41. T. Ziegler and A. Rauk Inorg. Chem. 18, 1755 (1979).

    Article  CAS  Google Scholar 

  42. T. Ziegler Chem. Rev. 91, 651 (1991).

    Article  CAS  Google Scholar 

  43. O. Gunnarsson, J. Harris, and R. O. Jones Phys. Rev. 15, 3027 (1977).

    Article  CAS  Google Scholar 

  44. O. Gunnarsson and B. I. Lundqvist Phys. Rev. B 13, 4274 (1976).

    Article  CAS  Google Scholar 

  45. J. Andzelm and E. Wimmer J. Chem. Phys. 96, 1280 (1992).

    Article  CAS  Google Scholar 

  46. D. E. Ellis and G. S. Painter Phys. Rev. B2, 2887 (1970).

    Google Scholar 

  47. L. Hedin and B. I. Lundqvist, J. Phys. C4:2064 (1971).

    Google Scholar 

  48. B. J. Delley, J. Chem. Phys., 92, 508 (1990).

    Article  CAS  Google Scholar 

  49. H. Car and M. Parinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  CAS  Google Scholar 

  50. M. P. Teter, M. C., Payne, D. C. and Allan, Phys. Rev., B40, 12255 (1989).

    Google Scholar 

  51. A. D. Becke and R. M. Dickson, J. Chem. Phys., 92, 3610 (1990).

    Article  CAS  Google Scholar 

  52. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, 1986. Ab initio molecular orbital theory. John Wiley and Sons, New York.

    Google Scholar 

  53. P. C. Hariharan and J. A. Pople 1972. Chem. Phys. Lett. 66, 217.

    Article  Google Scholar 

  54. J. Andzelm, E. Radzio and D. R. Salahub, J. Comp. Chem. 6, 520 (1985).

    Article  CAS  Google Scholar 

  55. H. Tatewaki and S. Huziriaga, 1979, J. Chem. Phys. 71:4339.

    Article  CAS  Google Scholar 

  56. S. Huzinaga, J. Andzelm, H. Klobukowski, E Radzio, E Sakai, and H. Tatewaki. Gaussian basis sets for molecular calculations. Elsevier, Amsterdam. 1984.

    Google Scholar 

  57. N. Godbout, D. R. Salahub, J. Andzelm, and E. Wimmer, Can. J. Chem. 70, 560 (1992).

    Article  CAS  Google Scholar 

  58. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).

    Article  CAS  Google Scholar 

  59. J. P. Perdew Phys. Rev. B33, 8822 (1986).

    Google Scholar 

  60. J. P. Perdew Phys. Rev. B34, 7406E (1986).

    Google Scholar 

  61. J. P. Perdew and Y. Wang, Phys. Rev. B33, 8800 (1986).

    Google Scholar 

  62. A. D. Becke Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  63. R. Fournier, J. Chem. Phys. 92, 5422 (1990).

    Article  CAS  Google Scholar 

  64. R. Fournier, J. Andzelm, and D. R. Salahub J. Chem. Phys. 90, 6371 (1989).

    Article  CAS  Google Scholar 

  65. J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, Int. J. Qu, J. Chem. Phys. 88, 322 (1988).

    Article  Google Scholar 

  66. J. A. Pople, R. Krishnan, H. B. Schlegel, and J. S. Binkley, antum Chem. Symp. 13, 225 (1979).

    CAS  Google Scholar 

  67. P. Pulay, J. Chem. Phys. 78, 5043 (1983).

    Article  CAS  Google Scholar 

  68. P. Pulay, Mol. Phys. 17, 197 (1969).

    Article  CAS  Google Scholar 

  69. L. Versluis and T. Zieglcr, J. Chem. Phys. 88, 322 (1988).

    Article  CAS  Google Scholar 

  70. A. Komornicki and G. Fitzgerald, J. Chem. Phys. 98, 1398 (1993).

    Article  CAS  Google Scholar 

  71. B. G. Johnson and M. J. Frisch, Chem. Phys. Lett. 216, 133 (1993).

    Article  CAS  Google Scholar 

  72. J. Guan et al., to be published.

    Google Scholar 

  73. P. E. M. Siegbahn and M. R. A. Blomberg, in Theoretical Aspects of Homogeneous Catalysis, Applications of Ab Initio Molecular Orbital Theory, P. W. N. M. van Leeuwen, J. II. van Lenthe, and K. Morokuma Eds., Kluwer Academic Pub. (1993).

    Google Scholar 

  74. T. Ziegler, A. Rauk, and E. J. Baerends, Theoret. Chim. Acta 43, 261 (1977).

    Article  CAS  Google Scholar 

  75. F. Kutzler and G. S. Painter, Phys. Rev. B 43, 6865 (1991).

    Article  Google Scholar 

  76. A. Görling, Phys. Rev. A 47, 2783 (1993).

    Article  Google Scholar 

  77. T. V. Russo, R. L. Martin, and P. J. Hay, preprint.

    Google Scholar 

  78. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  CAS  Google Scholar 

  79. J. P. Perdew, Phys. Rev. B 33, 8822 (1986).

    Article  Google Scholar 

  80. C. W. Bauschlicher, Jr., P. S. Bagus, C. J. Nelin, and B. O. Roos, J. Chem. Phys. 85, 354 (1986).

    Article  CAS  Google Scholar 

  81. A. Daoudi, M. Suard, and G. Berthier, J. Mol. Struct. (Theochem) 210, 139 (1990).

    Article  Google Scholar 

  82. R. Fournier, J. Chem. Phys. 99, 1801 (1993).

    Article  CAS  Google Scholar 

  83. J. M. Parnis, S. A. Mitchell, and P. A. Hackett, J. Phys. Chem. 94, 8152 (1990).

    Article  CAS  Google Scholar 

  84. P. W. Villalta and D. G. Leopold, J. Chem. Phys. 98, 7730 (1993).

    Article  CAS  Google Scholar 

  85. L. S. Sunderlin, D. Wang, and R. R. Squires, J. Am. Chem. Soc. 114, 2788 (1992).

    Article  CAS  Google Scholar 

  86. M. A. Blitz, S. A. Mitchell, and P. A. Hackett, J. Phys. Chem. 95, 8719 (1991).

    Article  CAS  Google Scholar 

  87. L. A. Barnes, M. Rosi, and C. W. Bauschlicher Jr., J. Chem. Phys. 94, 2031 (1991).

    Article  CAS  Google Scholar 

  88. G.-H. Jeung, J. Am. Chem. Soc. 114, 3211 (1992).

    Article  CAS  Google Scholar 

  89. R. Fournier, J. Chem. Phys. 98, 8041 (1993).

    Article  CAS  Google Scholar 

  90. M. Castro, D. R. Salahub, and R. Fournier, J. Chem. Phys. (1994).

    Google Scholar 

  91. A bent geometry for the triplet state of NiCO had previously been suggested by Clark et al. on the basis of Hartree-Fock calculations, D. T. Clark, B. J. Cromarty, and A. Sgamellotti, Chem. Phys. Lett. 55, 482 (1978).

    Article  CAS  Google Scholar 

  92. C. W. Bauschlicher, Jr., J. Chem. Phys. 100, 1215 (1994).

    Article  CAS  Google Scholar 

  93. J. H. B. Chenier, C. A. Hampson, J. A. Howard and B. Mile, J. Phys. Chem. 93, 114 (1989).

    Article  CAS  Google Scholar 

  94. P. H. Kasai and P. M. Jones, J. Am. Chem. Soc. 107, 813 (1985).

    Article  CAS  Google Scholar 

  95. D. G. Leopold, private communication.

    Google Scholar 

  96. H. Partridge, J. Chem. Phys. 90, 1043 (1989).

    Article  CAS  Google Scholar 

  97. H. Huber, G. A. Ozin, and W. J. Power, J. Am. Chem. Soc. 98, 6508 (1976).

    Article  CAS  Google Scholar 

  98. T. Merle-Mejean, C. Cosse-Mertens, S. Bouchareb, F. Galan, J. Mascetti, and M. Tranquille, J. Phys. Chem. 96, 9148 (1992).

    Article  CAS  Google Scholar 

  99. E. S. Kline, Z. H. Kafafi, R. H. Hauge, and J. L. Margrave, J. Am. Chem. Soc. 109, 2402 (1987).

    Article  CAS  Google Scholar 

  100. I. Pápai, J. Mink, R. Fournier, and D. R. Salahub, J. Phys. Chem., 97, 9986 (1993).

    Article  Google Scholar 

  101. S. A. Mitchell, M. A. Blitz, and R. Fournier, Can. J. Chem., in press.

    Google Scholar 

  102. C. E. Brown, S. A. Mitchell, and P. A. Hackett, Chem. Phys. Lett. 191, 175 (1992).

    Article  CAS  Google Scholar 

  103. R. Fournier, Int. J. Quantum Chem., in press.

    Google Scholar 

  104. L. Lian, F. Akhtar, P. A. Hackett, and D. M. Rayner, Int. J. Chem. Kin., in press.

    Google Scholar 

  105. L. Lian, P. A. Hackett, and D. M. Rayner, J. Chem. Phys. 99, 2583 (1993).

    Article  CAS  Google Scholar 

  106. R. Brosseau, T. H. Ellis, and Wang, Chem. Phys. Lett, 117, 118 (1991).

    Article  Google Scholar 

  107. R. Brosseau, PhD thesis, Université de Montréal (1993).

    Google Scholar 

  108. See, H. B. Schlegel, in Ab Initio Methods in Quantum Chemistry-I, edited by K. P. Lawley (Wiley, New York, 1987).

    Google Scholar 

  109. H. J. Freund and R. P. Messmer, Surf. Science, 172, 1 (1968).

    Article  Google Scholar 

  110. S. Sirois and D. R. Salahub, to be published.

    Google Scholar 

  111. L Pápai, J. Ushio and D. H. Salahub, Surf. Sci. 282, 262 (1993).

    Article  Google Scholar 

  112. A. Goursot, I. Papai, and D. H. Salahub, J. Am. Chem. Soc. 114, 7452 (1992).

    Article  CAS  Google Scholar 

  113. I. Shim and K. A. Gmgerich, J. Chem. Phys 80, 5107 (1984).

    Article  CAS  Google Scholar 

  114. H. Basch and D. Cohen, Isr. J. Chem. 19, 233 (1980).

    CAS  Google Scholar 

  115. J. Andzelm, E. Radzio and D. R. Salahub, J. Chem. Phys. 83, 4573 (1985).

    Article  CAS  Google Scholar 

  116. S. S. Lin, B. Strauss and A. Kant, J. Chem. Phys. 51, 2282 (1969).

    Article  CAS  Google Scholar 

  117. D. L. Cocke and K. A. Gingerich, J. Chem. Phys. 60, 1958 (1974).

    Article  CAS  Google Scholar 

  118. K. Balasubramanian, J. Chem. Phys. 89, 6310 (1988).

    Article  CAS  Google Scholar 

  119. K. Balasubramanian and D. W. Liao, J. Phys. Chem. 93, 3989 (1989).

    Article  CAS  Google Scholar 

  120. J. Andzelm and D.R. Salahub in: Physics and Chemistry of Small Clusters, Eds. P. Jena, B. K. Rao and S. N. Khanna, Nato Advanced Study Institute, Physics, (Plenum, New York, vol. 158, p. 867, 1987).

    Chapter  Google Scholar 

  121. H. Fournier and D.R. Salahub, Surf. Sci. 245, 263 (1991).

    Article  CAS  Google Scholar 

  122. P. Mlynarski and D. R. Salahub, J. Chem. Phys. 95, 6050 (1991).

    Article  CAS  Google Scholar 

  123. S. Ladas, H. Poppa and M. Boudart Surf. Sci. 102, 151 (1981).

    Article  CAS  Google Scholar 

  124. E. Gillet, S. Channakhone and V. Matolin, J. Catal. 97, 437 (1986).

    Article  CAS  Google Scholar 

  125. B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).

    Article  CAS  Google Scholar 

  126. S. K. Loh, D. A. Hales, L. Lian, and P. B. Armentrout, J. Chem. Phys. 90, 5466 (1989).

    Article  CAS  Google Scholar 

  127. L. Lian, C.-X. Su, and P. B. Armentrout, J. Chem. Phys. 97, 4072 (1992).

    Article  CAS  Google Scholar 

  128. L. Lian, C.-X. Su, and P. B. Armentrout, J. Chem. Phys. 96, 7542 (1992).

    Article  CAS  Google Scholar 

  129. L. Lian, C.-X. Su, and P. B. Armentrout, J. Chem. Phys. 97, 4084 (1992).

    Article  CAS  Google Scholar 

  130. C.-X. Su and P. B. Armentrout, J. Chem. Phys. 99, 6506 (1993).

    Article  CAS  Google Scholar 

  131. D. A. Hales, C.-X. Su, L. Lian, and P. B. Armentrout, J. Chem. Phys. 100, 1049 (1994).

    Article  CAS  Google Scholar 

  132. W. A. de Heer, P. Milani, and A. Châtelain, Phys. Rev. Lett. 65, 488 (1990).

    Article  Google Scholar 

  133. J. P. Bucher, D. C. Douglas, and L. A. Bloomfield, Phys. Rev. Lett. 66, 3052 (1991).

    Article  CAS  Google Scholar 

  134. I. M. L. Billas, J. A. Becker, A. Châtelain, and W. A. Deheer, Phys. Rev. Lett. 71, 4067 (1993).

    Article  CAS  Google Scholar 

  135. D. M. Cox, D. J. Trevor, R. L. Whetten, E. A. Rohlfing, and A. Kaldor, Phys. Rev. B 32, 7290 (1985).

    Article  CAS  Google Scholar 

  136. S. N. Khanna and S. Linderoth, Phys. Rev. Lett. 67, 742 (1991).

    Article  CAS  Google Scholar 

  137. E. A. Rohlfing, D. M. Cox, A. Kaldor, and K. H. Johnson, J. Chem. Phys. 81, 3846 (1984).

    Article  CAS  Google Scholar 

  138. D. R. Salahub, Adv. Chem. Phys. 69, 447 (1987), and references therein.

    Article  CAS  Google Scholar 

  139. S. Taylor, E. M. Spain, and M. D. Morse, J. Chem. Phys. 92, 2698 (1990).

    Article  CAS  Google Scholar 

  140. E. M. Spain and M. D. Morse, J. Phys. Chem. 96, 2479 (1992).

    Article  CAS  Google Scholar 

  141. J. M. Behm, C. A. Arrington, J. D. Langenberg, and M. D. Morse, J. Chem. Phys. 99, 6394 (1993).

    Article  CAS  Google Scholar 

  142. J. M. Behm, C. A. Arrington, and M. D. Morse, J. Chem. Phys. 99, 6409 (1993).

    Article  CAS  Google Scholar 

  143. H. Simard, P. A. Hackett, A. M. James, P. R. R. Langridge-Smith, Chem. Phys. Lett. 186, 415 (1991).

    Article  CAS  Google Scholar 

  144. A. M. James, P. Kowalczyk, R. Fournier, and B. Simard, J. Chem. Phys. 99, 8504 (1993).

    Article  CAS  Google Scholar 

  145. B. J. Winter, E. K. Parks, and S. J. Riley, J. Chem. Phys. 94, 8618 (1991).

    Article  CAS  Google Scholar 

  146. E. K. Parks, B. J. Winter, T. D. Klots, and S. J. Riley, J. Chem. Phys. 94, 1882 (1991).

    Article  CAS  Google Scholar 

  147. E. K. Parks, T. D. Klots, B. J. Winter, and S. J. Riley, J. Chem. Phys. 99, 5831 (1993).

    Article  CAS  Google Scholar 

  148. P. J. Brucat, C. L. Pettiette, S. Yang, L.-S. Zheng, M. J. Craycraft, and R. E. Smalley, J. Chem. Phys. 85, 4747 (1986).

    Article  CAS  Google Scholar 

  149. Y. Hamrich, S. Taylor, G. W. Lernire, Z.-W. Fu, J.-C. Shiu, and M. D. Morse, J. Chem. Phys. 88, 4095 (1988).

    Article  Google Scholar 

  150. J. L. Elkind, F. D. Weiss, J. M. Alford, R. T. Laaksonen, and R. E. Smalley, J. Chem. Phys. 88, 5215 (1988).

    Article  CAS  Google Scholar 

  151. J. L. Martins, J. Buttet, and R. Car, Phys. Rev. B 31, 1804 (1985).

    Google Scholar 

  152. R. O. Jones. Phys. Rev. Lett. 67, 224 (1991).

    Article  CAS  Google Scholar 

  153. R. O. Jones. J. Chem. Phys. 99, 1194 (1993).

    Article  CAS  Google Scholar 

  154. A. Martinez, A. Vela, D. R. Salahub, P. Calaminici and N. Russo, to be published.

    Google Scholar 

  155. P. Calaminici and N. Russo, Z Phys. D, submitted.

    Google Scholar 

  156. T. H. Upton, Phys. Rev. Lett. 56, 2168 (1986).

    Article  CAS  Google Scholar 

  157. T. H. Upton, J. Chem. Phys. 86, 7054 (1987).

    Article  CAS  Google Scholar 

  158. L. Hanley, S. A. Ruatta and S. L. Anderson J. Chem. Phys. 87, 260 (1987).

    Article  CAS  Google Scholar 

  159. K. Raghavachari and C. M. Rohlfing, J. Chem. Phys. 89, 2219 (1988);.

    Article  CAS  Google Scholar 

  160. R. Fournier, S. B. Sinnott, and A. E. DePristo, J. Chem. Phys. 97, 4149 (1992).

    Article  CAS  Google Scholar 

  161. R. Fournier, S. B. Sinnott, and A. E. DePristo, J. Chem. Phys. 98, 9222 (1993);.

    Article  CAS  Google Scholar 

  162. H. Tatewaki, M. Tomonari and T. Nakamura, J. Chem. Phys. 88, 6419 (1989).

    Article  Google Scholar 

  163. M. Castro and D. R. Salahub, Phys. Rev. B 47, 10955 (1993).

    Article  CAS  Google Scholar 

  164. L. Goodwin and D. R. Salahub, Phys. Rev. A 47, R774 (1993).

    Article  CAS  Google Scholar 

  165. C. Jamorski, M. Castro, and D. R. Salahub, to be published.

    Google Scholar 

  166. M. Moskovits, D. P. DiLella, and W. Limm, J. Chem. Phys. 80, 626 (1984).

    Article  CAS  Google Scholar 

  167. E. Carter, private communication.

    Google Scholar 

  168. P. Calaminici, M. Castro, D. R. Salahub, and N. Russo, to be published.

    Google Scholar 

  169. C. Kittel, Introduction to Solid State Physics, 6th Ed. (Wiley, New York, 1986).

    Google Scholar 

  170. R. C. Weast Ed., CRC Handbook of Chemistry and Physics 66th ed. (CRC Press, Boca Raton, 1985).

    Google Scholar 

  171. H. Kobayashi, M. Yamaguchi, and T. Ito, J. Phys. Chem. 94, 7206 (1990).

    Article  CAS  Google Scholar 

  172. T. Ito, T. Tashiro, M. Kawasaki, T. Watanabe, K. Toi, and H. Kobayashi, J. Phys. Chem. 95, 4477 (1991).

    Article  Google Scholar 

  173. K. Sawabe, N. Koga, and K. Morokuma, J. Chem. Phys. 97, 6871 (1992).

    Article  CAS  Google Scholar 

  174. A. Zecchina, M. G. Lofthouse, F. S. Stone, J. Chem. Soc, Faraday Trans. 1 87, 4411 (1983).

    Google Scholar 

  175. E. Garrone, A. Zecchina, F. S. Stone, Phil. Mag., B42, 683 (1980).

    Article  Google Scholar 

  176. M. Che, A. J. Tench, Adv. Catal. 31, 77 (1982).

    Article  CAS  Google Scholar 

  177. E. Proynov and D. R. Salahub, Phys. Rev. B 49 77 (1994), in press, and references therein.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salahub, D.R. et al. (1994). Density Functional Description of Metal-Metal and Metal-Ligand Bonds. In: Sellers, H.L., Golab, J.T. (eds) Theoretical and Computational Approaches to Interface Phenomena. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1319-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1319-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1321-0

  • Online ISBN: 978-1-4899-1319-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics