Skip to main content

Polyamines and Morphogenesis in Monocots: Experimental Systems and Mechanisms of Action

  • Chapter
Morphogenesis in Plants

Part of the book series: NATO ASI Series ((NSSA,volume 253))

Abstract

Much of the enthusiasm and speculation regarding the potential use of biotechnology in crop improvement is based on demonstrations obtained in dicot plant systems, particularly tobacco. Thus, it is often assumed that what has been possible to achieve with model plants such as, for example, transformation of protoplasts by foreign DNA and subsequent regeneration of genetically altered plants, can also be accomplished with important crops like cereals. Unfortunately, severe difficulties frequently arise in the application of this technology to most of the important monocot plants. Two of the basic requirements for the application of these techniques in cereals are to obtain mesophyll protoplast systems capable of continuous division and proliferation in in vitro culture, and the regeneration of plants from calluses derived from those single protoplast cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman A, Kaur-Sawhney R, Galston AW (1977) Stabilization of oat protoplasts through polyamine-mediated inhibition of senescence. Plant Physiol 60: 570–574.

    Article  PubMed  CAS  Google Scholar 

  • Altman A (1989) Polyamines and plant hormones In: The Physiology of Polyamines, Bachrach U, Heimer YM (eds), vol 2, CRC Press Inc, Boca Raton, pp 121–145.

    Google Scholar 

  • Altman A, Schwartz M, Cohen Y, Arzee T (1990) A role for polyamines in differentiation and growth of plants roots In: The Biology and Chemistry of Polyamines, Goldemberg SH, Algranati HD (eds), IRL Press, Oxford, pp 147.

    Google Scholar 

  • Apelbaum A, Burgoon AC, Anderson JD, Lieberman M, Ben-Arie R, Matoo AK (1981) Polyamines inhibit biosynthesis of ethylene in higher plant tissue and fruit protoplasts. Plant Physiol 68: 453–456.

    Article  PubMed  CAS  Google Scholar 

  • Arditti J, Jeffrey D, Flick B (1971) Post-pollination phenomena in orchid flowers. III. Effects and interactions of auxin, kinetin and gibberellin. New Phytol 70: 1125–1141.

    Article  CAS  Google Scholar 

  • Arditti J (1979) Aspects of the physiology of orchids. Advances in Botanical Research 7: 241–665.

    Google Scholar 

  • Arditti J (1984) An history of orchid hybridization, seed germination and tissue culture. Botanical Journal of the Linnean Society 89: 359–381.

    Article  Google Scholar 

  • Bachrach U (1973) Function of Naturally Occurring Polyamines. Academic Press, New York.

    Google Scholar 

  • Balestreri E, Cioni P, Romagnoli A, Bernini S, Fissi A, Felicioli R (1987) Mechanism of polyamine inhibition of leaf protease. Arch Biochem Biophys 255: 460–463.

    Article  PubMed  CAS  Google Scholar 

  • Ballas S, Mohandas N, Marton L, Shohet S (1983) Stabilization of erythrocyte membranes by polyamines. Proc Natl Acad Sci USA 80: 1942–1946.

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Malmberg RL (1990) Analysis of a cDNA encoding arginine decarboxylase from oat reveals similarity to the Escherichia coli arginine decarboxylase and evidence protein processing. Mol Gen Genet 224: 431–436.

    Article  PubMed  CAS  Google Scholar 

  • Berridge M (1987) Inositol trisphosphate and diacylglicerol: two interacting second messengers. Ann Rev Biochem 56: 159–193.

    Article  PubMed  CAS  Google Scholar 

  • Besford R, Thomas B (1988) Production of monoclonal antibodies to thylakoid proteins In Meeting on Photosynthesis, AFRC, London, pp 50.

    Google Scholar 

  • Besford R (1990) The greenhouse effect: acclimation of tomato plants growing in high CO2, relative changes in Calvin cycle enzymes. J Plant Physiol 136: 458–463.

    Article  CAS  Google Scholar 

  • Besford R, Thomas B, Huskisson N, Butcher G (1990) Characterization of conformers of D1 of photosystem II using site-directed antibodies. Z Naturforsch 45: 621–626.

    CAS  Google Scholar 

  • Besford R, Richardson C, Campos JL, Tiburcio AF (1992) Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically-stressed oat leaves. Planta, in press.

    Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann H Jr (1989) Polyamines as radical scavengers and protectans against ozono damage. Phytochemistry 28: 1589–1595.

    Article  CAS  Google Scholar 

  • Capell T, Campos JL, Tiburcio AF (1993) Antisenescence properties of guazatine in osmotically-stressed oat leaves. Phytochemistry, in press.

    Google Scholar 

  • Chadwick A, Hogan N, Arditti J (1980) Post-pollination phenomena in orchid flowers. IX. Induction and inhibition of ethylene evolution, anthocyanin synthesis, and perianth senescence. Bot Gaz 141: 422–427.

    Article  CAS  Google Scholar 

  • Chen C, Kao C (1986) Localized effect of 1, 3-diaminopropane and benzyladenine on chlorophyll loss in soybean primary leaves. Bot Bull Acad Sin 27: 97–100.

    CAS  Google Scholar 

  • Cocucci S, Bagni N (1968) Polyamine induced activation of protein synthesis in ribosomal preparation from Helianthus tuberosus tissue. Life Sci 7: 113–120.

    Article  CAS  Google Scholar 

  • Drolet G, Dumbroff EB, Legge RL, Thompson JE (1986) Radical scavenging properties of polyamines. Phytochemistry 25: 367–371.

    Article  CAS  Google Scholar 

  • Dumbroff E (1991) Mechanisms of polyamine action during plant development In: Lecture Course on Polyamines as Modulators of Plant Development, Galston AW, Tiburcio AF (eds), vol 257 Fundación Juan March, Madrid, pp 62–66.

    Google Scholar 

  • Dumortier FM, Flores HE, Shekhawat NS, Galston AW (1983) Gradients of polyamines and their biosynthetic enzymes in coleoptiles and roots of corn. Plant Physiol 72: 915–918.

    Article  PubMed  CAS  Google Scholar 

  • Duncan D, Williams M, Zehr B, Wildholm J (1985) The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta 165: 322–332.

    Article  CAS  Google Scholar 

  • Dureja-Munjal I, Acharya M, Guha-Mukherjee S (1992) Effect of hormones and spermidine on the turnover of inositolphospholipids in Brassica seedlings. Phytochemistry 31: 1161–1163.

    Article  CAS  Google Scholar 

  • Feirer RP, Mignon, Litvay JD (1984) Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223: 1433–1435.

    Article  PubMed  CAS  Google Scholar 

  • Flores HE, Galston AW (1982). Polyamines and plant stress: Activation of putrescine biosynthesis by osmotic shock. Science 211: 1259–1261.

    Article  Google Scholar 

  • Flores HE (1983) Studies on the physiology and biochemistry of polyamines in higher plants PhD Dissertation Yale University.

    Google Scholar 

  • Flores HE, Kaur-Sawhney R, Galston AW (1981) Protoplasts as vehicles for plant propagation and improvement In: Advances in Cell Culture, Maramorosch K (ed), vol 1, Academic Press, New York, pp 241–279.

    Google Scholar 

  • Flores HE, Protacio C (1990) Polyamine metabolism in plant cell and organ culture In: Polyamines and Ethylene: Biochemistry, Physiology, and Interactions, Flores HE, Arteca RN, Shannon JC (eds), American Society of Plant Physiologists, Rockville, Maryland, pp 126–137.

    Google Scholar 

  • Flores HE, Young, ND, Galston, AW (1985) Polyamine metabolism and plant stress In: Cellular and Molecular Biology of Plant Stress, Key JL, Kosuge T (eds), Alan R Liss, New York, pp 93–114.

    Google Scholar 

  • Flores HE, Protacio C, Signs M (1988) Primary and secondary metabolism of polyamines in plants In: Plant Nitrogen Metabolism, Poulton JE, Romeo JT, Conn EE (eds), vol 23, Plenum Press, New York, pp 329–393.

    Google Scholar 

  • Fuchs Y, Galston AW (1976) Macromolecular synthesis in oat leaf protoplasts. Plant Cell Physiol 17: 475–482.

    CAS  Google Scholar 

  • Fuhrer J, Kaur-Sawhney R, Shih L-M, Galston AW (1982) Effect of exogenous 1, 3-diaminopropane and spermidine on senescence of oat leaves II Inhibition of ethylene and possible mode of action. Plant Physiol 70: 1597–1600.

    Article  PubMed  CAS  Google Scholar 

  • Galston AW, Altaian A, Kaur-Sawhney R (1978) Polyamines, ribonuclease and the improvement of oat leaf protoplasts. Plant Sci Lett 11: 69–79.

    Article  CAS  Google Scholar 

  • Galston AW, Kaur-Sawhney R (1982) Polyamines: are they a new class of growth regulators? In: Plant Growth Substances, Wareing P (ed), Academic Press, London, pp 451–461.

    Google Scholar 

  • Gelein C (1984) Catalogue: cut flowers-pot plants-bedding plants In: Verenige Bloemenveilingen Aalsmeer, The Netherlands, pp 105-115.

    Google Scholar 

  • Grossowicz N, Ariel M (1963) Mechanism of protection of cells by spermine against lysozyme-induced lysis. J Bacteriol 85: 293–300.

    PubMed  CAS  Google Scholar 

  • Guarino L, Cohen S (1979) Mechanism of toxicity of putrescine in Anacystis nidulans. Proc Natl Acad Sci USA 76: 3660–3664.

    Article  PubMed  CAS  Google Scholar 

  • Hahne B, Fleck J, Hahne G (1989) Colony formation from mesophyll protoplasts of a cereal oat. Proc Natl Acad Sci USA 86: 6157–6160.

    Article  PubMed  CAS  Google Scholar 

  • Heby O (1981) Role of polyamines in the control of cell proliferation and differentiation. Differentiation 19: 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Hew C, Tan S, Chin T, Ong T (1989) Influence of ethylene on enzyme activities and mobilization of materials in pollinated Arachnis orchid flowers. J Plant Growth Regul 8: 121–130.

    Article  CAS  Google Scholar 

  • Isola MC, Franzoni L (1989) Inhibition of net synthesis of ribonuclease by polyamines in potato tuber slices. Plant Sci 63: 39–45.

    Article  CAS  Google Scholar 

  • Kar RK, Choudhuri MA (1986) Effects of light and spermine on senescence of Hydrilla and spinach leaves. Plant Physiol 80: 1030–1033.

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney R, Rancillac M, Staskawicz B, Adams W, Galston AW (1976) Effect of cycloheximide and kinetin on yield, integrity and metabolic activity of oat leaf protoplasts. Plant Sci Lett 7: 57–67.

    Article  CAS  Google Scholar 

  • Kaur-Sawhney R, Altman A, Galston AW (1978) Dual mechanisms in polyamine-mediated control of ribonuclease activity in oat leaf protoplasts. Plant Physiol 62: 158–160.

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney R, Galston AW (1979) Interaction of polyamines and light on biochemical processes involved in leaf senescence. Plant Cell Environ 2: 189–196.

    Article  Google Scholar 

  • Kaur-Sawhney R, Flores HE, Galston AW (1980) Polyamine-induced DNA synthesis and mitosis in oat leaf protoplasts. Plant Physiol 65: 368–371.

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney R, Shih L, Flores H, Galston AW (1982a) Relation of polyamine synthesis an titer to ageing and senescence in oat leaves. Plant Physiol 69: 405–410.

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney R, Shih L, Cegielska T, Galston AW (1982b) Inhibition of protease activity by polyamines Relevance for control of leaf senescence. FEBS Lett 145: 345–349.

    Article  CAS  Google Scholar 

  • Kaur-Sawhney R, Shekhawat NS, Galston AW (1985) Polyamine levels as related to growth, differentiation and senescence in protoplast-derived cultures of Vigna aconitifolia and Avena sativa. Plant Growth Regul 3: 329–337.

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Galston AW (1988) Spermidine and flower-bud differentiation in thin layer expiants of tobacco. Planta 173: 282–284.

    Article  CAS  Google Scholar 

  • Kaur-Sawhney R, Galston AW (1991) Physiological and biochemical studies on the anti-senescence properties of polyamines in plants In: Biochemistry and Physiology of Polyamines in Plants, Slocum RD, Flores HE (eds), CRC Press, Boca Raton, pp 201–211.

    Google Scholar 

  • Kinnersley A, Racusen R, Galston AW (1978) A comparison of regenerated cell walls in tobacco and cereal protoplasts. Planta 139: 155–158.

    Article  Google Scholar 

  • Kushad M, Dumbroff E (1991) Metabolic and physiological relationships between the polyamine and ethylene biosynthetic pathways In: Biochemistry and Physiology of Polyamines in Plants, Slocum RD, Flores HE (eds), CRC Press, Boca Raton, pp 77–92.

    Google Scholar 

  • Lázár G, Borbély G, Udvardy J, Premecz G, Farkas G (1973) Osmotic shock triggers an increase in ribonuclease level in protoplasts isolated from tobacco leaves. Plant Sci Lett 1: 53–57.

    Article  Google Scholar 

  • Li N, Parsons B, Liu D, Mattoo A (1992) Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Mol Biol 18: 477–487.

    Article  PubMed  CAS  Google Scholar 

  • Marton L, Morris D (1987) Molecular and cellular functions of the polyamines In: Inhibition of Polyamine Metabolism, McCann PP, Pegg A, Sjoerdsma A (eds), Academic Press, San Diego, pp 79–105.

    Google Scholar 

  • Mehta A, Saftner R, Schaeffer G, Matto A (1991) Translational Modification of an 18 kilodalton polypeptide by spermidine in rice cell suspension cultures. Plant Physiol 95: 1294–1297.

    Article  PubMed  CAS  Google Scholar 

  • Mizrahi Y, Applewhite PB, Galston AW (1989) Polyamine binding to proteins in oat and Petunia protoplasts. Plant Physiol 91: 738–743.

    Article  PubMed  CAS  Google Scholar 

  • Montague MJ, Koppenbrink JW, Jaworski EG (1978) Polyamine metabolism in embryogenic cells of Daucus carota. Plant Physiol 62: 430–433.

    Article  PubMed  CAS  Google Scholar 

  • Morris D, Jordstad C (1973) Growth and macromolecular composition of a mutant of Eschericnia coli during polyamine limitation. J Bacteriol 113: 271–277.

    PubMed  CAS  Google Scholar 

  • Napier R, Venis M (1990) Receptors for plant growth regulators: recent advances. J Plant Growth Regul 9: 113–126.

    Article  CAS  Google Scholar 

  • Pegg A (1986) Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 234: 249–262.

    PubMed  CAS  Google Scholar 

  • Persson L, Oredsson S, Anehus S, Heby O (1985) Ornithine decarboxylase inhibitors increase the cellular content of the enzyme: Implications for translational regulation. Biochem Biophys Res Commun 131: 239–245.

    Article  PubMed  CAS  Google Scholar 

  • Popovic R, Kyle D, Cohen A, Zalik S (1979) Stabilization of thylakoid membranes by spermine during stress-induced senescence of barley leaf discs. Plant Physiol 64: 721–726.

    Article  PubMed  CAS  Google Scholar 

  • Premecz G, Ruzicska P, Oláh T, Guyás A, Nyitrai A, Palfi G, Farkas G (1977) Is the increase in ribonuclease level in isolated tobacco protoplasts due to osmotic stress?. Plant Sci Lett 9: 195–200.

    Article  CAS  Google Scholar 

  • Rhodes C, Lowe K, Ruby K (1988) Plant regeneration from protoplasts isolated from embryogenie maize cell cultures. Bio/Technology 6: 56–60.

    Article  Google Scholar 

  • Roberts DR, Dumbroff EB, Thompson JE (1986) Exogenous polyamines alter membrane fluidity in bean leaves-a basis for potential misinterpretation of their true physiological role. Planta 167: 395–401.

    Article  CAS  Google Scholar 

  • Santos M, Torné JM, Blanco J (1984) Methods of obtaining maize totipotent tissues. I. Seedling segments culture. Plant Sci Lett 33: 309–315.

    Article  Google Scholar 

  • Schwartz M, Altaian A, Cohen Y, Arzee T (1986) Localization of ornithine decarboxylase and changes in polyamine content in root meristems of Zea mays. Physiol Plant 67: 485–492.

    Article  CAS  Google Scholar 

  • Slocum RD, Kaur-Sawhney R, Galston AW (1984) The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 235: 283–303.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava S, Vashi D, Naik B (1983) Control of senescence by polyamines and guanidines in young and mature barley leaves. Phytochemistry 22: 2115–2154.

    Google Scholar 

  • Strogonov B, Shevyakova N, Kabanov Y (1972) Diamines in plant metabolism under conditions of salinization. Fiziol Rast 19: 1098–1104.

    CAS  Google Scholar 

  • Tabor CW (1960) The stabilizing effect of spermine and related amines on mitochondria and protoplasts. Biochem Biophys Res Commun 2: 117–120.

    Article  CAS  Google Scholar 

  • Tabor H, Tabor CW (1964) Spermidine, spermine, and related amines. Pharmacol Rev 16: 245–300.

    PubMed  CAS  Google Scholar 

  • Tabor CW, Tabor H (1984) Polyamines. Ann Rev Biochem 53: 749–790.

    Article  PubMed  CAS  Google Scholar 

  • Tiburcio AF, Masdéu MA, Dumortier FM, Galston AW (1986a) Polyamine metabolism and osmotic stress. I. Relation to protoplast viability. Plant Physiol 82: 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Galston AW (1986b) Polyamine metabolism and osmotic stress II Improvement of oat protoplasts by an inhibitor of arginine decarboxylase. Plant Physiol 82: 375–378.

    Article  PubMed  CAS  Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Galston AW (1986c) Spermidine synthase as affected by osmotic stress. Plant Physiol 80: S–303.

    Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Galston AW (1987) Regulation by polyamines of plant tissue culture development In: Advances in the Chemical Manipulation of Plant Tissue Culture, Jackson MB, Mantell SH, Blake J (eds), Monograph No 16, British Plant Growth Regulator Group, pp 43-56.

    Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Galston AW (1988) Polyamine biosynthesis during vegetative and floral bud differentiation in thin layer tobacco tissue cultures. Plant Cell Physiol 29: 1241–1249.

    CAS  Google Scholar 

  • Tiburcio AF, Gendy C, Tran Thanh Van K (1989) Morphogenesis in tobacco subepidermal cells: putrescine as marker of root differentiation. Plant Cell Tiss Or g Cult 19: 43–54.

    Article  CAS  Google Scholar 

  • Tiburcio AF, Kaur-Sawhney R, Galston AW (1990a) Polyamine metabolism In: The Biochemistry of Plants, Intermediary Nitrogen Metabolism, Miflin BJ, Lea PJ (eds), Academic Press, New York, pp 283–325.

    Chapter  Google Scholar 

  • Tiburcio AF, Figueras X, Claparols I, Santos M, Torné JM (1990b) Polyamines and aging: effect of polyamine biosynthetic inhibitors on plant regeneration in maize callus cultured in vitro In: Plant Aging: Basic and Applied Approaches, Rodriguez R, Tames RS, Durzan DJ (eds), NATO ASI Series, Plenum Press, New York, pp 277–284.

    Chapter  Google Scholar 

  • Tiburcio AF, Figueras X, Claparols I, Santos M, Torné JM (1991) Improved plant regeneration in maize callus cultures after pretreatment with DL-alpha-difluoromethylarginine. Plant Cell Tiss Or g Cult 27: 27–32.

    Article  CAS  Google Scholar 

  • Torné JM, Santos M (1990) The meristematic calluses of maize: a maintenance system of tissue juvenility In: Rodriguez R, Tames RS, Durzan DJ (eds), NATO ASI Series, Plenum Press, New York, pp 395–398.

    Google Scholar 

  • Torrigiani P, Altamura M, Pasqua G, Monacelli B, Serafini-Fracassini D, Bagni N (1987) Free and conjugated polyamines during de novo floral and vegetative bud formation in thin cell layers of tobacco. Physiol Plant 70: 453–460.

    Article  CAS  Google Scholar 

  • Vasil V, Vasil I, Lu C (1984) Somatic embryogenesis in long-term callus cultures of Zea mays L (Gramineae). Amer J Bot 71: 158–161.

    Article  Google Scholar 

  • Vasil I (1987) Developing cell and tissue culture systems for the improvement of cereal and grass crops. J Plant Physiol 128: 193–218.

    Article  Google Scholar 

  • Winer L, Apelbaum A (1986) Involvement of polyamines in the development and ripening of avocado fruits. J Plant Physiol 126: 223–233.

    Article  CAS  Google Scholar 

  • Young D, Srinivasan P (1972) Regulation of macromolecular synthesis by putrescine in a conditional Escherichia coli putrescine auxotroph. J Bacteriol 112: 30–39.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tiburcio, A.F. et al. (1993). Polyamines and Morphogenesis in Monocots: Experimental Systems and Mechanisms of Action. In: Roubelakis-Angelakis, K.A., Van Thanh, K.T. (eds) Morphogenesis in Plants. NATO ASI Series, vol 253. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1265-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1265-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1267-1

  • Online ISBN: 978-1-4899-1265-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics