Skip to main content

Abstract

In spite of major research and development efforts in transdermal systems and the many advantages of the transdermal route, impermeability of the human skin is still a major problem that limits the usefulness of the transdermal approach. It is well accepted that the stratum corneum is the major rate-limiting barrier to molecular diffusion through the mammalian epidermis.1,2 Because most drugs do not permeate the skin in therapeutic amounts, chemical and physical approaches have been examined to lower the stratum corneum barrier properties and enhance transdermal permeation.3,4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Scheuplein RJ, Blank IH. Permeability of the skin. Physiol Rev. 1971;51:702–747.

    PubMed  CAS  Google Scholar 

  2. Bartek M, LaBudde J, Maibach H. Skin permeability in vitro: Comparison in rat, rabbit, pig and man. J Invest Dermatol. 1972;58:114.

    Article  PubMed  CAS  Google Scholar 

  3. Rolf D. Chemical and physical methods of enhancing transdermal drug delivery. Pharm Technol. 1988(Sept.);130–139.

    Google Scholar 

  4. Hadgraft J, Guy RH. Transdermal Drug Delivery. New York Marcel Dekker; 1989.

    Google Scholar 

  5. Walters KA. Penetration enhancers and their use in transdermal therapeutic systems. In: Hadgraft J, Guy HG, eds. Transdermal Drug Delivery: Developmental Issues and Research Initiatives. Marcel Dekker; 1989:197–246.

    Google Scholar 

  6. Skauen DM, Zentner GM. Phonophoresis. Int J Pharm. 1984;20:235–245.

    Article  CAS  Google Scholar 

  7. Quillen WS. Phonophoresis: A review of the literature and technique. Athl Train. 1980; 15:109–110.

    Google Scholar 

  8. Tyle P, Agrawala P. Drug delivery by phonophoresis. Pharm Res. 1989;6:355–361.

    Article  PubMed  CAS  Google Scholar 

  9. Curie J, Curie P. Compt Rend. 1881;93:1137.

    Google Scholar 

  10. Curie J, Curie P. Compt Rend. 1880;91:294.

    Google Scholar 

  11. Hoogland R. Ultrasound Therapy. Delft, The Netherlands: B. V.. Enraf Nonius Delft, Holland; 1986.

    Google Scholar 

  12. Sislick KS. Ultrasound: Its Chemical, Physical and Biological Effects. Weinheim, Germany: VCH Publishers; 1988.

    Google Scholar 

  13. Mason TJ. Chemistry with Ultrasound. London: Elsevier Applied Science; 1990.

    Google Scholar 

  14. Wells PNT. Biomedical Ultrasonics. New York: Academic Press; 1977.

    Google Scholar 

  15. Fellinger K, Schmid J. Klinik and Therapies des Chromischen Gelenkreumatismus. Maudrich Vienna, Austria: 1954;549–552.

    Google Scholar 

  16. Newman MK, Kill M, Frompton G. The effect of ultrasound alone and combined with hydrocortisone injections by needle or hypospray. Am J Phys Med. 1958;37:206–209.

    PubMed  CAS  Google Scholar 

  17. Coodley GL. Bursitis and post-traumatic lesions. Am Pract. 1960;11:181–187.

    CAS  Google Scholar 

  18. Antich TJ. Phonophoresis: The principles of the ultrasonic driving force and efficacy in treatment of common orthopaedic diagnoses. J Ortho Sports Phys Ther. 1982;4:99–102.

    CAS  Google Scholar 

  19. Cameroy BM. Ultrasound enhanced local anesthesia. Am J Orthoped. 1966;8:47.

    Google Scholar 

  20. Griffin JE, Echternach JL, Price RE, Touchstone JC. Patients treated with ultrasonic driven hydrocortisone and with ultrasound alone. Phys Ther. 1967;47:594–601.

    PubMed  CAS  Google Scholar 

  21. Moll MA. A new approach to pain. U.S. Armed Forces Med Serv Dig. 1979;30:8–11.

    Google Scholar 

  22. McElnay JC, Matthews MP, Harland R, McCafferty DF. The effect of ultrasound on the percutaneous absorption of lignocaine. Br J Clin Pharm. 1985;20:421–424.

    Article  CAS  Google Scholar 

  23. McElnay JC, Kennedy TA, Harland R. The influence of ultrasound on the percutaneous absorption of fluocinolone acetonide. Int J Pharm. 1987;40:105–110.

    Article  CAS  Google Scholar 

  24. Benson HAE, McElnay JC, Harland R. Phonophoresis of lignocaine and prilocaine from Emla® cream. Int J Pharm. 1988;44:65–69.

    Article  CAS  Google Scholar 

  25. Benson HAE, McElnay JC, McCallion O, Harland R, Murphy TM, Hadgraft J. Influence of ultrasound on the percutaneous absorption of a range of nicotinate esters. J Pharm Pharmacol. 1989;40:40.

    Google Scholar 

  26. Benson HAE, McElnay JC, Harland R, Hadgraft J. Influence of ultrasound on the percutaneous absorption of nicotinate esters. Pharm Res. 1991;8:204–209.

    Article  PubMed  CAS  Google Scholar 

  27. Kleinkort JA, Wood F. Phonophoresis with 1 percent versus 10 percent hydrocortisone. Phys Ther. 1975;55:1320–1324.

    PubMed  CAS  Google Scholar 

  28. Benson HAE, McElnay JC. Transmission of ultrasound energy through topical pharmaceutical products. Physiotherapy. 1988;74:587–589.

    Article  Google Scholar 

  29. Williams AR. Phonophoresis: An in vivo evaluation using three topical anaesthetic preparations. Ultrasonics. 1990;28:137–141.

    Article  PubMed  CAS  Google Scholar 

  30. Eisner P, Maibach HI. Acute sodium lauryl sulfate skin toxicity is not enhanced by phonophoresis. 1991 (submitted).

    Google Scholar 

  31. Tsitlanazde VG. Morphohistochemical changes during experimental arthritis in rabbits caused by hydrocortisone phonophoresis. Soobshch AkadNauk Gruz SSR. 1971;63:237–240.

    Google Scholar 

  32. Griffin JE, Touchstone JC. Effects of ultrasonic frequency on phonophoresis of Cortisol into swine tissues. Am J Phys Med. 1972;51:62.

    PubMed  CAS  Google Scholar 

  33. Griffin JE, Touchstone JS. Ultrasonic movement of Cortisol into pig tissue. I. Movement into skeletal muscle. Am J Phys Med. 1963;42:77–85.

    Article  PubMed  CAS  Google Scholar 

  34. Griffin JE, Touchstone JS. Ultrasonic movement of Cortisol into pig tissue. II. Movement into paravertebral nerve. Am J Phys Med. 1965;44:20–25.

    Article  PubMed  CAS  Google Scholar 

  35. Griffin JE, Touchstone JC. Low-intensity phonophoresis of Cortisol in swine. Phys Ther. 1968;48(12): 1336–1344.

    PubMed  CAS  Google Scholar 

  36. Pratzel H, Dittrich P, Kukovetz W. Spontaneous and forced cutaneous absorption of indomethacin in pigs and humans. J Rheumatol. 1986; 13:1122–1125.

    PubMed  CAS  Google Scholar 

  37. Camel EC, Melenders J, Maibach HI. Effect of ultrasound on the in vivo percutaneous absorption of drugs in the rhesus monkey. 1991 (submitted).

    Google Scholar 

  38. Kremkau FW. Ultrasonic treatment of experimental animal tumors. Br J Cancer. 1982;45(suppl 5):226–232.

    Google Scholar 

  39. Tachibana K, Tachibana S. Transdermal delivery of insulin by ultrasonic vibration. J Pharm Pharmacol. 1991;43:270–271.

    Article  PubMed  CAS  Google Scholar 

  40. Kost J, Levy D, Langer R. Ultrasound Effect on Transdermal Drug Delivery. Norfolk, Virginia: Controlled Release Society; 1986:177–178.

    Google Scholar 

  41. Kost J, Levy D, Langer R. Ultrasound as a Transdermal Enhancer. 2nd ed. New York: Marcel Dekker; 1989:595–601.

    Google Scholar 

  42. Levy D, Kost J, Mashulam Y, Langer R. Effect of ultrasound on transdermal drug delivery to rats and guinea pigs. J Clin Invest. 1989;83:2074–2078.

    Article  PubMed  CAS  Google Scholar 

  43. Miyazaki S, Mizuoka H, Oda M, Takada M. External control of drug release and penetration: Enhancement of the transdermal absorption of indomethacin by ultrasound irradiation. J Pharm Pharmacol. 1991;43:115–116.

    Article  PubMed  CAS  Google Scholar 

  44. Bommannan D, Okuyama H, Stauffer P, Guy R. Sonophoresis: Enhancement of Transdermal Drug Delivery Using Ultrasound. Reno, Nevada: Controlled Release Society; 1990.

    Google Scholar 

  45. Bommannan D, Okuyama H, Stauffer P, Guy RH. Sonophoresis. I. The use of ultrasound to enhance transdermal drug delivery. Pharm Res. 1992;9:559–564.

    Article  PubMed  CAS  Google Scholar 

  46. Nanavaty M, Brucks R, Grimes H, Siegel FP. An ATR-FTIR Approach to Study the Effect of Ultrasound on Human Skin. Chicago: Controlled Release Society; 1989:310–311.

    Google Scholar 

  47. Goodman M, Barry BW. Action of skin permeation enhancers azone, oleic acid and decylmethyl sulphoxide: Permeation and DSC studies. J Pharm Pharmacol. 1986;38(suppl):71.

    Article  Google Scholar 

  48. Kost J, Machluf M, Langer R. Experimental Approaches to Elucidate the Mechanism of Ultrasonically Enhanced Transdermal Drug Delivery. Reno, Nevada: Controlled Release Society; 1990:29–30.

    Google Scholar 

  49. Bommannan D, Menon GK, Okuyama H, Elias P, Guy RH. Sonophoresis. II. Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery. Pharm Res. 1992;9:1043–1047.

    Article  PubMed  CAS  Google Scholar 

  50. Chen YL, Israelachvili J. New Mechanism of cavitation damage. Science. 1991;252:1157–1160.

    Article  CAS  Google Scholar 

  51. Mortimer AJ, Trollope BJ, Villneuve EJ, Roy OZ. Ultrasound-enhanced diffusion through isolated frog skin. Ultrasonics. 1988;26:348–351.

    Article  PubMed  CAS  Google Scholar 

  52. Mortimer AJ, Maclean JA. A dosimeter for ultrasonic cavitation. J Ultrasound Med. 1986;5(suppl): 137.

    Google Scholar 

  53. Howkins SD. Diffusion rates and the effect of ultrasound. Ultrasonics. 1969;8:129–130.

    Article  Google Scholar 

  54. Fogler S, Lund K. Acoustically augmented diffusional transport. J Acoust Soc Am. 1973;53:59–64.

    Article  Google Scholar 

  55. Nyborg WL. Acoustic Streaming. New York: Academic Press; 1965:265–332.

    Google Scholar 

  56. Lenart I, Auslander D. The effect of ultrasound on diffusion through membranes. Ultrasonics. 1980;18:216–218.

    Article  PubMed  CAS  Google Scholar 

  57. Julian TN, Zentner GM. Ultrasonically mediated solute permeation through polymer barriers. J Pharm Pharmacol. 1986;38:871–877.

    Article  PubMed  CAS  Google Scholar 

  58. Julian TN, Zentner GM. Mechanism for ultrasonically enhanced transmembrane solute permeation. J Controlled Release. 1990; 12:77–85.

    Article  CAS  Google Scholar 

  59. Kost J, Leong K, Langer R. Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci. U.S.A. 1989;86:7663–7666.

    Article  PubMed  CAS  Google Scholar 

  60. Liu L-S, Kost J, D’Emanuele A, Langer R. Experimental approach to elucidate the mechanism of ultrasound-enhanced polymer erosion and release of incorporated substances. Macromolecules. 1992;25:123–128.

    Article  CAS  Google Scholar 

  61. D’Emanuele A, Kost J, Hill J, Langer R. An investigation of the effect of ultrasound on degradable polyanhydride matrices. Macromolecules. 1992;25:511–515.

    Article  Google Scholar 

  62. Machluf M, Kost J. Ultrasonically enhanced transdermal drug delivery. Experimental approaches to elucidate the mechanism. J. Biomater. Sci. Polymer. 1993 (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kost, J., Langer, R. (1993). Ultrasound-Mediated Transdermal Drug Delivery. In: Shah, V.P., Maibach, H.I. (eds) Topical Drug Bioavailability, Bioequivalence, and Penetration. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1262-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1262-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1264-0

  • Online ISBN: 978-1-4899-1262-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics