Skip to main content

Part of the book series: Microdevices ((MDPF))

  • 272 Accesses

Abstract

Successes in the vertical and horizontal technology of semiconductor structure fabrication have opened up new possibilities for creating solid-state devices which have better high-speed operating characteristics than do bipolar and field-effect transistors. Modern technology makes it possible to produce layered structures whose thicknesses are in the tens of nanometers and less. Lowering the dimensions of the active regions of the devices, roughly speaking, to something less than the size of a free electron in a crystal requires that we no longer think of the electron as a classical particle and that we apply quantum physics to analyze their operation. Not only does the concept of the investigation change, but the principles of operation of solid-state electronic devices as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. H. Wichmann, Quantum Physics, The Berkeley Physics Course, Vol. IV, McGraw-Hill, New York (1967).

    Google Scholar 

  2. S. Luryi, “Hot-electron injection and resonant-tunneling heterojunction devices,” in: Heteroj unction Band Discontinuities: Physics and Device Applications, F. Capasso and G. Margaritondo (eds.), Elsevier Science Publishers B. V. (1987), pp. 489-564.

    Google Scholar 

  3. A. S. Tager, “Dimensional quantum effects in submicron semiconductor structures and the prospects for their application in microwave electronics, Part I. The physical foundations,” Élektronika Tekhnika, Ser. Élektronika SVCh, No. 9(403), 21-34, (1987).

    Google Scholar 

  4. Z. Yasuhito, “Influence of transmission resonance on current-voltage characteristics of semiconductor diodes including a quantum well,” Jpn. J. Appl. Phys., 23, No. 8, 531–533 (1984).

    Google Scholar 

  5. H. C. Liu, “Resonant tunneling through single layer heterostructures,” Appl. Phys. Lett., 51, No. 13, 1019–1021 (1987).

    Article  ADS  Google Scholar 

  6. S. Collins, D. Lowe, and J. R. Barker, “Resonant tunneling in heterostructures: Numerical simulation and qualitative analysis of the current density,” J. Appl. Phys., 63, No. 1, 142–149 (1988).

    Article  ADS  Google Scholar 

  7. S. Y. Chou, E. Wolak, and J. S. Harris, Jr., “Resonant tunneling of electrons of one or two degrees of freedom,” Appl. Phys. Lett., 52, No. 8, 657–659 (1988).

    Article  ADS  Google Scholar 

  8. A. R. Bonnefoi, D. H. Chow, and T. C. McGill, “Energy-band diagrams and current—voltage characteristics of single-barrier tunnel structures,” J. Appl. Phys., 62, No. 9, 3836–3844 (1987).

    Article  ADS  Google Scholar 

  9. D. H. Chow, T. C. McGill, I. K. Sou, et al., “Observation of negative differential resistance from a single barrier heterostructure,” Appl. Phys. Lett., 52, No. 1, 54–56 (1988).

    Article  ADS  Google Scholar 

  10. L. V. Keldysh, “The effect of ultrasound on the electron spectrum of a crystal,” FTT, 4, No. 8, 2265–2267 (1962).

    Google Scholar 

  11. R. H. Davis and H. H. Hosack, “Double barrier in thin-film triodes,” J. Appl. Phys., 34, No. 4, 864–866 (1963).

    Article  ADS  Google Scholar 

  12. L. V. Iogansen, “Thin-film electron interferometers,” UFN, 86, No. 1, 175–179 (1965).

    Google Scholar 

  13. L. V. Iogansen, “On the possibility that electrons in crystals can tunnel through a system of barriers,” ZhÉtf, 45, No. 2, 207–213 (1963).

    Google Scholar 

  14. B. Ricco and M. Ya. Azbel, “Physics of resonant tunneling. The one-dimensional double-barrier case,” Phys. Rev. B, 29, No. 4, 1970–1981 (1984).

    Article  ADS  Google Scholar 

  15. H. Morkoç, J. Chen, U. K. Reddy, et al., “Observation of a negative differential resistance due to tunneling through a single barrier into a quantum well,” Appl. Phys. Lett., 49, No. 2, 70–72 (1986).

    Article  ADS  Google Scholar 

  16. S. Luryi, “Frequency limit of double-barrier resonant-tunneling oscillators,” Appl. Phys. Lett., 47, No. 5, 490–492 (1985).

    Article  ADS  Google Scholar 

  17. M. Johnson and A. Grincwajg, “Effect of inelastic scattering on resonant and sequential tunneling in double barrier heterostructures,” Appl. Phys. Lett., 51, No. 21, 1729–1731 (1987).

    Article  ADS  Google Scholar 

  18. L. Eaves, G. A. Toombs, F. W. Sheard, et al., “Sequential tunneling due to intersubband scattering in double-barrier resonant tunneling devices,” Appl. Phys. Lett., 52, No. 3, 212–214 (1988).

    Article  ADS  Google Scholar 

  19. J. M. Gering, D. A. Crim, D. G. Morgan, et al., “A small-signal equivalent circuit model for GaAs-AlxGal-xAs resonant tunneling heterostructures at microwave frequencies,” J. Appl Phys., 61, No. 1, 271–276 (1987).

    Article  ADS  Google Scholar 

  20. D. S. Pan and C. C. Meng, “On the mechanism and frequency limit of double-barrier quantum-well structures,” J. Appl Phys., 61, No. 5, 2082–2084 (1987).

    Article  ADS  Google Scholar 

  21. T. Weil and B. Vinter, “Equivalence between resonant tunneling and sequential tunneling in double-barrier diodes,” Appl Phys. Lett., 50, No. 18, 1281–1283 (1987).

    Article  ADS  Google Scholar 

  22. S. Collins, D. Lowe, and J. R. Barker, “A dynamic analysis of resonant tunneling,” J. Phys. C: Solid State Phys., 20, 6233–6243 (1987).

    Article  ADS  Google Scholar 

  23. H. C. Liu, “Time-dependent approach to double-barrier quantum well oscillators,” Appl. Phys. Lett., 52, No. 6, 453–455 (1988).

    Article  ADS  Google Scholar 

  24. R. Tsu and L. Esaki, “Tunneling in a finite superlattice,” Appl Phys. Lett., 22, No. 11, 562–564 (1973).

    Article  ADS  Google Scholar 

  25. L. L. Chang, L. Esaki, and R. Tsu, “Resonant tunneling in semiconductor double barriers,” Appl Phys. Lett., 24, No. 12, 593–595 (1974).

    Article  ADS  Google Scholar 

  26. T. C. L. G. Sollner, P. E. Tannenwald, D. D. Peck, et al., “Quantum well oscillators,” Appl. Phys. Lett., 45, No. 12, 1319–1321 (1984).

    Article  ADS  Google Scholar 

  27. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, et al., “Resonant tunneling through quantum wells at frequencies up to 2.5 THz,” Appl Phys. Lett., 43, No. 6, 588–590 (1983).

    Article  ADS  Google Scholar 

  28. T. J. Shewchuk, J. M. Gering, P. C. Chapin, et al., “Stable and unstable current—voltage measurements of a resonant tunneling heterostructure oscillator,” Appl Phys. Lett., 47, No. 9, 986–988 (1985).

    Article  ADS  Google Scholar 

  29. M. Tsuchiya, H. Sakaki, and J. Yoshino, “Room temperature observation of differential negative resistance in an AlAs/GaAs/AlAs resonant tunneling diode,” Jpn. J. Appl. Phys., 24, No. 6, L466–L468 (1985).

    Article  ADS  Google Scholar 

  30. M. Tsuchiya and H. Sakaki, “Precise control of resonant tunneling currents in AlAs/GaAs/AlAs double barrier diodes with automically-controlled barrier widths,” Jpn. J. Appl Phys., 25, No. 3, L185–L187 (1986).

    Article  ADS  Google Scholar 

  31. S. Ray, P. Ruden, V. Sokolov, et al., “Resonant tunneling transport at 300 K in GaAs-AlGaAs quantum wells grown by metalorganic chemical vapor deposition,” Appl Phys. Lett., 48, No. 24, 1666–1668 (1986).

    Article  ADS  Google Scholar 

  32. H. Sakaki, M. Tanaka, and J. Yoshino, “One atomic layer heterointerference fluctuations in GaAs-AlAs quantum well structures and their suppression by insertion of smoothing period in molecular beam epitaxy,” Jpn. J. Appl. Phys., 24, No. 6, L417–L420 (1985).

    Article  ADS  Google Scholar 

  33. W. D. Goodhue, T. C. L. G. Sollner, H. Q. Le, et al., “Large room-temperature effects from resonant tunneling through AlAs barriers,” Appl. Phys. Lett., 49, No. 17, 1086–1088 (1986).

    Article  ADS  Google Scholar 

  34. S. Muto, S. Hiyamizu, and N. Yokoyama, “Transport characteristics in heterostructure devices,” in: High-Speed Electronics, Proc. Int. Conf., Stockholm, Sweden, August 7-9, 1986, B. Källback and H. Beneking (eds.), Springer-Verlag, Berlin—Heidelberg—New York—London—Paris—Tokyo, (1986) pp. 72-78.

    Google Scholar 

  35. W. R. Frensley, “Quantum transport calculation of the small-signal response of a resonant tunneling diode,” Appl. Phys. Lett., 51, No. 6, 448–450 (1987).

    Article  ADS  Google Scholar 

  36. T. C. L. G. Sollner, E. R. Brown, W. D. Goodhue, et al., “Observation of millimeter-wave oscillations from resonant tunneling diodes and some theoretical considerations of ultimate frequency limits,” Appl. Phys. Lett., 50, No. 6, 332–334 (1987).

    Article  ADS  Google Scholar 

  37. E. R. Brown, T. C. L. G. Sollner, W. D. Goodhue, et al., “Millimeter-band oscillations based on resonant tunneling in a double-barrier diode at room temperature,” Appl. Phys. Lett., 50, No. 2, 83–85 (1987).

    Article  ADS  Google Scholar 

  38. T. C. L. G. Sollner, E. R. Brown, and W. D. Goodhue, “Microwave and millimeter-wave resonant tunneling diodes,” in: Picosecond Electronics and Optoelectronics Tech. Digest, 87-1, Optical Society of America, Washington, D.C. (1987), pp. 143-145.

    Google Scholar 

  39. E. R. Brown, T. C. L. G. Sollner, W. D. Goodhue, et al., “Fundamental oscillations up to 200 GHz in a resonant-tunneling diode,” Device Research Conference, Santa Barbara, USA, 1987.

    Google Scholar 

  40. K. F. Brennan, “Self-consistent analysis of resonant tunneling in a two-barrier-one-well microstructure,” J. Appl. Phys., 62, No. 6, 2392–2400 (1987).

    Article  ADS  Google Scholar 

  41. M. Cahay, M. McLennan, S. Datta, et al., “Importance of space-charge effects in resonant tunneling devices,” Appl. Phys. Lett., 50, No. 10, 612–614 (1987).

    Article  ADS  Google Scholar 

  42. F. W. Sheard and G. A. Toombs, “Space-charge buildup and bistability in resonant-tunneling double-barrier structures,” Appl. Phys. Lett., 52, No. 15, 1228–1230 (1988).

    Article  ADS  Google Scholar 

  43. M. C. Payne, “Space charge effects in resonant tunneling,” Semicond. Sci. Technol., 2, No. 3, 797–801 (1987).

    Article  ADS  Google Scholar 

  44. H. Ohnishi, T. Inata, S. Muto, et al., “Self-consistent analysis of resonant tunneling current,” Appl. Phys. Lett., 49, No. 19, 1248–1250 (1986).

    Article  ADS  Google Scholar 

  45. V. J. Goldman, D. C. Tsui, and J. E. Cunningham, “Evidence for LO-phonon-emission-assisted tunneling in double-barrier heterostructures,” Phys. Rev. B, 36, No. 14, 7635–7637 (1987).

    Article  ADS  Google Scholar 

  46. T. C. L. G. Sollner, H. Q. Le, C. A. Correa, et al., “Persistent photoconductivity in quantum well resonators,” Appl. Phys. Lett., 47, No. 1, 36–38 (1985).

    Article  ADS  Google Scholar 

  47. H. C. Liu and D. D. Coon, “Negative differential resistance of double barrier diodes at zero bias,” Appl. Phys. Lett., 50, No. 23, 1669–1671 (1987).

    Article  ADS  Google Scholar 

  48. M. Razeghi, A. Tardella, R. A. Davies, et al., “Negative differential resistance at room temperature from resonant tunneling in GaInAs/InP double-barrier heterostructures,” Electron. Lett., 23, No. 3, 116–117 (1987).

    Article  ADS  Google Scholar 

  49. T. H. H. Vuong, D. C. Tsui, and W. T. Tsang, “Tunneling in In0.53Ga0.47As-InP double-barrier structures,” Appl. Phys. Lett., 50, No. 4, 212–214 (1987).

    Article  ADS  Google Scholar 

  50. A. W. Higgs, L. L. Taylor, N. Apsley, et al., “Resonant tunneling in In0.53Ga0.47As/InP double-barrier structures grown by AP-MOCVD,” Electron. Lett., 24, No. 6, 322–323 (1988).

    Article  Google Scholar 

  51. G. S. Lee, K. Y. Hsieh, and R. M. Kolbas, “Negative differential resistance in a strained-layer quantum-well structure with a bound state,” J. Appl. Phys., 62, No. 8, 3453–3456 (1987).

    Article  ADS  Google Scholar 

  52. T. Inata, S. Muto, Y. Nakata, et al., “A pseudomorphic In0.53Ga0.47As/GaAs resonant tunneling barrier with a peak-to-valley current ratio of 14 at room temperature,” Jpn. J. Appl. Phys., 26, No. 8, L1332–L1334 (1987).

    Article  ADS  Google Scholar 

  53. G. S. Lee, K. Y. Hsieh, and R. M. Kolbas, “Room-temperature negative differential resistance in strained-layer GaAs-AlGaAs-InGaAs quantum well heterostructures,” Appl. Phys. Lett., 49, No. 22, 1528–1530 (1986).

    Article  ADS  Google Scholar 

  54. M. A. Reed and J. W. Lee, “Resonant tunneling in a GaAs/AlGaAs barrier/ InGaAs quantum well heterostructure,” Appl. Phys. Lett., 50, No. 13, 845–847 (1987).

    Article  ADS  Google Scholar 

  55. C. H. Yang and H. D. Shih, “Improved AlxGal-xAs/Gal-yInyAs/GaAs strained-layer double barrier resonant tunneling structure,” Electron. Lett., 24, No. 9, 553–555 (1988).

    Article  ADS  Google Scholar 

  56. R. C. Potter and A. A. Lakhani, “Observation of electron quantum interference effects due to virtual states in a double-barrier heterostructure at room temperature,” Appl. Phys. Lett., 52, No. 16, 1349–1351 (1988).

    Article  ADS  Google Scholar 

  57. Y. Sugiyama, T. Inata, S. Muto, et al., “Current—voltage characteristics of In0.53Ga0.47As/In0.52Al0.48As resonant tunneling barrier structures grown by molecular beam epitaxy,” Appl. Phys. Lett., 52, No. 4, 314–316 (1988).

    Article  ADS  Google Scholar 

  58. A. A. Lakhani, R. C. Potter, D. Beyea, et al, “Al0.48In0.52As/Ga0.47In0.53As resonant tunneling diodes with large current peak—valley ratio,” Electron. Lett., 24, No. 3, 153–154 (1988).

    Article  ADS  Google Scholar 

  59. P. D. Hodson, D. J. Robbins, R. H. Wallis, et al., “Resonant tunneling in AlInAs/GaInAs double barrier diodes grown by MOCVD,” Electron. Lett., 24, No. 3, 187–188 (1988).

    Article  ADS  Google Scholar 

  60. S. Sen, F. Capasso, A. L. Hutchinson, et al., “Room temperature operation of Ga0.47In0.53As/Al0.48In0.52As resonant tunneling diodes,” Electron. Lett., 23, No. 23, 1229–1231 (1987).

    Article  Google Scholar 

  61. R. C. Potter, A. A. Lakhani, D. Beyea, et al., “Enhancement of current peak-to-valley ratio in In0.52Al0.48As/In0.53Ga0.47As-based resonant tunneling diodes,” J. Appl. Phys., 63, No. 12, 5875–5876 (1988).

    Article  ADS  Google Scholar 

  62. M. A. Tischler, N. G. Anderson, R. M. Kolbas, et al., “Stimulated emission from ultra-thin InAs/GaAs quantum well heterostructures grown by atomic layer epitaxy,” Appl. Phys. Lett., 50, No. 18, 1266–1268 (1987).

    Article  ADS  Google Scholar 

  63. F. Capasso and R. A. Kiehl, “Resonant tunneling transistor with quantum well base and high-energy injection: A new negative differential resistance device,” J. Appl. Phys., 58, No. 3, 1366–1368 (1985).

    Article  ADS  Google Scholar 

  64. R. F. Kazarinov and R. A. Suris, “The possibilities of amplifying electromagnetic waves in a semiconductor containing a superlattice,” FTP, 5, No. 4, 797–800 (1971).

    Google Scholar 

  65. R. F. Kazarinov and R. A. Suris, “Toward a theory of the electrical and electromagnetic properties of semiconductors containing a superlattice,” FTP, 6, No. 1, 148–162 (1972).

    Google Scholar 

  66. F. Capasso, K. Mohammed, and A. Y. Cho, “Electronic transport and depletion of quantum wells by tunneling through deep levels in semiconductor superlattice,” Phys. Rev. Lett., 57, No. 18, 2303–2306 (1986).

    Article  ADS  Google Scholar 

  67. R. A. Davies, M. J. Kelly, and T. M. Kerr, “Room-temperature oscillations in a super-lattice structure,” Electron. Lett., 22, No. 3, 131–133 (1986).

    Article  Google Scholar 

  68. F. Capasso, “Resonant tunneling transistors, tunneling superlattice devices and new quantum well avalanche photodiodes,” in: High-Speed Electronics. Proc. Int. Conf., Stockholm, Sweden, Aug. 7-9, 1986. B. Källback and H. Beneking (eds.), Springer-Verlag, Berlin—Heidelberg (1986) pp. 50–61.

    Chapter  Google Scholar 

  69. M. A. Reed, R. J. Koestner, and M. W. Goodwin, “Resonant tunneling through a HgTe/Hgl-xCdxTe double barrier, single quantum-well heterostructure,” Appl. Phys. Lett., 49, No. 19, 1293–1295 (1986).

    Article  ADS  Google Scholar 

  70. P. Gavrilovic, J. M. Brown, K. W. Kaliski, et al., “Resonant tunneling in a GaAsl-xPx-GaAs strained-layer quantum-well heterostructure,” Solid State Commun., 52, No. 3, 237–239 (1984).

    Article  ADS  Google Scholar 

  71. N. Yokoyama, K. Imamura, S. Muto, et al., “A new functional, resonant-tunneling hot electron transistor (RHET),” Jpn. J. Appl. Phys., 24, No. 11, L853–L854 (1985).

    Article  ADS  Google Scholar 

  72. S. Muto, T. Inata, N. Ohnishi, et al., “Effect of silicon doping profile on I–V characteristics of an AlGaAs/GaAs resonant tunneling barrier structure grown by MBE,” Jpn. J. Appl. Phys., 25, No. 7, L577–L579 (1986).

    Article  ADS  Google Scholar 

  73. T. Mori, H. Ohnishi, K. Imamura, et al., “Resonant tunneling hot-electron transistor with current gain of 5,” Appl. Phys. Lett., 49, No. 26, 1779–1780 (1986).

    Article  ADS  Google Scholar 

  74. A. Shibatomi and N. Yokoyama, “Resonant tunneling transistors,” Solid State Tech., 30, No. 11, 101–105 (1987).

    Google Scholar 

  75. K. Imamura, S. Muto, H. Ohnishi, et al., “Resonant-tunneling hot-electron transistor (RHET) using a GaInAs/(AlGa)InAs heterostructure,” Electron. Lett., 23, No. 17, 870–871 (1987).

    Article  ADS  Google Scholar 

  76. S. Muto and N. Yokoyama, “Resonant-tunneling hot electron transistors,” in: Abstracts of 19th Intern. Conf. Phys. Semicond., Warsaw, Poland, 15-19 August, 1988. Fr-A-II-1(inv).

    Google Scholar 

  77. R. C. Miller, A. C. Gossard, D. A. Kleinman, et al., “Parabolic quantum wells with the GaAs-AlxGal-xAs system,” Phys. Rev. B, 29, No. 6, 3740–3743 (1984).

    Article  ADS  Google Scholar 

  78. S. Sen, F. Capasso, A. C. Gossard, et al., “Observation of resonant tunneling through a compositionally graded parabolic quantum well,” Appl. Phys. Lett., 51, No. 18, 1428–1430 (1987).

    Article  ADS  Google Scholar 

  79. S. Y. Chou and J. S. Harris, Jr., “Room temperature observation of resonant tunneling through an AlGaAs/GaAs quasiparabolic quantum well grown by molecular beam epitaxy,” Appl. Phys. Lett., 52, No. 17, 1422–1424 (1988).

    Article  ADS  Google Scholar 

  80. F. Capasso, K. Mohammed, and A. Y. Cho, “Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications,” IEEE J. Quant. Electron., QE-22, No. 9, 1853–1869 (1986).

    Article  ADS  Google Scholar 

  81. F. Capasso, “Band-gap engineering: from physics and materials to new semiconductor devices,” Science, 235, 172–176 (1987).

    Article  ADS  Google Scholar 

  82. J. F. Palmier, C. Minot, J. L. Lievin, et al., “Observation of Bloch conduction perpendicular to interfaces in a superlattice bipolar transistor,” Appl. Phys. Lett., 49, No. 19, 1260–1262 (1986).

    Article  ADS  Google Scholar 

  83. B. Jogai and K. L. Wang, “Dependence of tunneling current on structural variations of superlattice devices,” Appl. Phys. Lett., 46, No. 2, 167–168 (1985).

    Article  ADS  Google Scholar 

  84. A. R. Bonnefoi, D. H. Chow, and T. C. McGill, “Inverted base-collector tunnel transistors,” Appl. Phys. Lett., 47, No. 8, 888–890 (1985).

    Article  ADS  Google Scholar 

  85. F. Capasso, S. Sen, and A. Y. Cho, “Negative transconductance resonant tunneling field-effect transistor,” Appl. Phys. Lett., 51, No. 7, 526–528 (1987).

    Article  ADS  Google Scholar 

  86. T. K. Woodward, T. C. McGill, H. F. Chung, et al., “Integration of a resonant-tunneling structure with a metal-semiconductor field-effect transistor,” Appl. Phys. Lett., 51, No. 19, 1542–1544 (1987).

    Article  ADS  Google Scholar 

  87. T. K. Woodward, T. C. McGill, H. F. Chung, et al., “Applications of resonant tunneling field-effect transistors,” IEEE Electron Dev. Lett., EDL-9, No. 3, 122–124 (1988).

    Article  ADS  Google Scholar 

  88. T. K. Woodward, T. C. McGill, and R. D. Burnham, “Experimental realisation of a resonant tunneling transistor,” Appl. Phys. Lett., 50, No. 8, 451–453 (1987).

    Article  ADS  Google Scholar 

  89. S. Luryi and F. Capasso, “Resonant tunneling of two-dimensional electrons through a quantum wire: A negative transconductance device,” Appl. Phys. Lett., 47, No. 12, 1347–1349 (1985).

    Article  ADS  Google Scholar 

  90. N. Yokoyama and K. Imamura, “Flip-flop circuit using a resonant-tunneling hot electron transistor (RHET),” Electron. Lett., 22, No. 23, 1228–1229 (1986).

    Article  ADS  Google Scholar 

  91. S. Sen, F. Capasso, A. Y. Cho, et al., “Resonant tunneling device with multiple negative differential mobility: Digital and signal processing applications with reduced circuit complexity,” IEEE Trans. Electron Dev., ED-34, No. 10, 2185–2191 (1987).

    Article  ADS  Google Scholar 

  92. A. A. Lakhani, R. C. Potter, and H. S. Hier, “Eleven-bit parity generator with a single, vertically integrated resonant tunneling device,” Electron. Lett., 24, No. 11, 681–682 (1988).

    Article  ADS  Google Scholar 

  93. S. W. Kirchoefer, R. Magno, and J. Comas, “Negative differential resistance at 300 K in a superlattice quantum state transfer device,” Appl. Phys. Lett., 44, No. 11, 1054–1056 (1984).

    Article  ADS  Google Scholar 

  94. J. M. Pond, S. W. Kirchoefer, and E. J. Cukauskas, “Microwave amplification to 2.5 GHz in a quantum state transfer device,” Appl. Phys. Lett., 47, No. 11, 1175–1177 (1985).

    Article  ADS  Google Scholar 

  95. N. Sawaki, M. Suzuki, Y. Takagaki, et al., “Photo-luminescence studies of hot electrons and real space transfer effect,” Superlattices Microstructures, 2, No. 4, 281–285 (1986).

    Article  ADS  Google Scholar 

  96. H. Kano, Y. Tanaka, N. Sawaki, et al., “Negative differential resistance device built in a biwell GaAs/AlGaAs superlattice,” J. Cryst. Growth, 81, No. 1-4, 144–148 (1987).

    Article  ADS  Google Scholar 

  97. N. Sawaki, M. Suzuki, E. Okuno, et al., “Real space transfer of two dimensional electrons in double quantum well structures,” Sol.-St. Electron., 31, No. 3/4, 351–354 (1988).

    Article  ADS  Google Scholar 

  98. B. Vinter and A. Tardella, “Tunneling transfer field-effect transistor: A negative transconductance device,” Appl. Phys. Lett., 50, No. 7, 410–412 (1987).

    Article  ADS  Google Scholar 

  99. A. Kastalsky and M. Milshtein, “Quantum well tunnel triode,” Appl. Phys. Lett., 52, No. 5, 398–400 (1988).

    Article  ADS  Google Scholar 

  100. A. Kastalsky and A. Grinberg, “Novel high-speed transistor based on charge emission from a quantum well,” Appl. Phys. Lett., 52, No. 11, 904–906 (1988).

    Article  ADS  Google Scholar 

  101. Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in the quantum theory,” Phys. Rev., 115, No. 3, 485–491 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  102. S. Datta and S. Bandyopadhyay, “Aharonov-Bohm effect in semiconductor microstructures,” Phys. Rev. Lett., 58, No. 7, 717–720 (1987).

    Article  ADS  Google Scholar 

  103. S. Datta, M. R. Melloch, S. Bandyopadhyay, et al., “Proposed structure for large quantum interference effects,” Appl. Phys. Lett., 48, No. 7, 487–489 (1986).

    Article  ADS  Google Scholar 

  104. S. Datta, M. R. Melloch, S. Bandyopadhyay, et al., “Novel interference effects between parallel quantum wells,” Phys. Rev. Lett., 55, No. 21, 2344–2347 (1985).

    Article  ADS  Google Scholar 

  105. R. Colella, A. W. Overhauser, and S. A. Werner, “Observation of gravitation-ally induced quantum interference,” Phys. Rev., Lett., 34, No. 23, 1472–1474 (1975).

    Article  ADS  Google Scholar 

  106. F. Capasso, A. S. Vengurlekar, A. Hutchinson, et al., “Negative transconductance superlattice base bipolar transistor,” Electron. Lett., 25, No. 17, 1117–1119 (1989).

    Article  Google Scholar 

  107. F. Beltram, F. Capasso, A. L. Hutchinson, et al., “Continuum-miniband superlattice-base transistor with graded-gap electron injection,” Electron. Lett., 25, No. 18, 1219–1220 (1989).

    Article  ADS  Google Scholar 

  108. L. M. Lunardi, S. Sen, F. Capasso, et al., “Microwave multiple-state resonant-tunneling bipolar transistors,” IEEE Electron Dev. Lett., 10, No. 5, 219–221 (1989).

    Article  ADS  Google Scholar 

  109. F. Capasso, S. Sen, A. Y. Cho, et al., “Multiple negative transconductance and differential conductance in bipolar transistor by sequential quenching of resonant tunneling,” Appl. Phys. Lett., 53, No. 12, 1056–1059 (1988).

    ADS  Google Scholar 

  110. S. Sen, F. Capasso, A. Y. Cho, et al., “Multiple state resonant tunneling bipolar transistor operating at room temperature and its application as a frequency multiplier,” IEEE Electron Dev. Lett., 9, No. 10, 533–535 (1988).

    Article  ADS  Google Scholar 

  111. M. C. Wu and W. T. Tsang, “Quantum-switched heterojunction bipolar transistor,” Appl. Phys. Lett., 55, No. 17, 1771–1773 (1989).

    Article  ADS  Google Scholar 

  112. M. C. Wu, L. Yang, and W. T. Tsang, “Quantum-switched heteroj unction bistable bipolar transistor by chemical beam epitaxy,” Appl. Phys. Lett., 57, No. 2, 150–152 (1990).

    Article  ADS  Google Scholar 

  113. M. A. Reed, W. R. Frensley, R. J. Matyi, et al., “Realization of a three-terminal resonant tunneling device: the bipolar quantum resonant tunneling transistor,” Appl. Phys. Lett., 54, No. 11, 1034–1036 (1989).

    Article  ADS  Google Scholar 

  114. J. Till, “Quantum-tunneling transistor breaks records for miniaturization and operating speed,” Electronic Design, 37, No. 1, 30 (1989).

    Google Scholar 

  115. F. Beltram, F. Capasso, S. Luryi, et al., “Negative transconductance via gating of the quantum well subbands in a resonant tunneling transistor,” Appl. Phys. Lett., 53, No. 3, 219–221 (1988).

    Article  ADS  Google Scholar 

  116. C. H. Yang, Y. C. Kao, and H. D. Shih, “New field-effect resonant tunneling transistor: Observation of oscillatory transconductance,” Appl. Phys. Lett., 55, No. 26, 2742–2744 (1989).

    Article  ADS  Google Scholar 

  117. Y. Takagaki, F. Wakaya, S. Takaoka, et al., “Fabrication of ballistic quantum wires and their transport properties,” Jpn. J. Appl. Phys., 28, No. 10, 2188–2192 (1989).

    Article  ADS  Google Scholar 

  118. K. Kash, R. Bhat, D. B. Mahoney, et al., “Strain-induced confinement of carriers to quantum wires and dots within an InGaAs-InP quantum well,” Appl. Phys. Lett., 55, No. 7, 681–683 (1989).

    Article  ADS  Google Scholar 

  119. S. Y. Chou, D. R. Allee, R. F. W. Pease, et al., “Observation of electron resonant tunneling in a lateral dual-gate resonant tunneling field-effect transistor,” Appl. Phys. Lett., 55, No. 2, 176–178 (1989).

    Article  ADS  Google Scholar 

  120. K. Ismail, D. A. Antoniadis, and H. I. Smith, “One-dimensional subbands and mobility modulation in GaAs/AlGaAs quantum wires,” Appl. Phys. Lett., 54, No. 12, 1130–1132 (1989).

    Article  ADS  Google Scholar 

  121. F. Sols, M. Macucci, U. Ravaioli, et al., “Theory for a quantum modulated transistor,” J. Appl. Phys., 66, No. 8, 3892–3906 (1989).

    Article  ADS  Google Scholar 

  122. F. Capasso and S. Datta, “Quantum electron devices,” Physics Today, 43, No. 2, 74–82 (1990).

    Article  Google Scholar 

  123. D. C. Hutchings, “Transfer matrix approach to the analysis of an arbitrary quantum well structure in an electric field,” Appl. Phys. Lett., 55, No. 11, 1082–1084 (1989).

    Article  ADS  Google Scholar 

  124. H. C. Liu and G. C. Aers, “Resonant tunneling through one-, two-, and three-dimensionally confined quantum wells,” J. Appl. Phys. 65, No. 12, 4908–4914 (1989).

    Article  ADS  Google Scholar 

  125. P. Exner, “Resonances in curved quantum wires,” Phys. Lett. A, 141, No. 5, 6, 213–216 (1989).

    Article  ADS  Google Scholar 

  126. J.-L. Zhu, B.-L. Gu, and Y.-M. Lou, “A powerful method for one-dimensional problems,” Phys. Lett. A, 142, No. 2,3, 159–163 (1989).

    Article  ADS  Google Scholar 

  127. P. E. Parris, “One-dimensional quantum transport in the presence of traps,” Phys. Rev. B, 40, No. 7, 4928–4937 (1989).

    Article  ADS  Google Scholar 

  128. M. A. Stroscio, “Interaction between longitudinal-optical-phonon modes of a rectangular quantum wire and charge carriers of a one-dimensional electron gas,” Phys. Rev. B, 40, No. 9, 6428–6431 (1989).

    Article  ADS  Google Scholar 

  129. H. Akera and T. Ando, “Hall effect in quantum wires,” Phys. Rev. B, 39, No. 8, 5508–5511 (1989).

    Article  ADS  Google Scholar 

  130. T. Yamada and J. Sone, “High-field electron transport in quantum wires studied by solution of the Boltzmann equation,” Phys. Rev. B., 40, No. 9, 6265–6271 (1989).

    Article  ADS  Google Scholar 

  131. H. L. Cui and N. J. M. Horing, “Dynamical conductivity of a quantum-wire superlattice,” Phys. Rev. B, 40, No. 5, 2956–2961 (1989).

    Article  ADS  Google Scholar 

  132. M. E. Shenwin and T. J. Drummond, “A parametric investigation of AlGaAs/GaAs modulation-doped quantum wires,” J. Appl. Phys., 66, No. 11, 5444–5455 (1989).

    Article  ADS  Google Scholar 

  133. D. C. Miller, R. K. Lake, S. Datta, et al., Proc. Intern. Symposium on Nanostructure Physics and Fabrication, College Station, Texas, March 13-15, 1989.

    Google Scholar 

  134. G. Timp, H. U. Baranger, P. deVegvar, et al., “Propagation around a band in a multichannel electron waveguide,” Phys. Rev. Lett., 60, No. 20, 2081–2084 (1988).

    Article  ADS  Google Scholar 

  135. T. K. Gaylord, E. N. Glytsis, and K. F. Brennan, “Semiconductor quantum wells as electron wave slab waveguides,” J. Appl. Phys., 66, No. 4, 1842–1848 (1989).

    Article  ADS  Google Scholar 

  136. B. Püdür and I. Mojzes, “Semiconductor quantum effect devices,” Presented at the Symposium on Electronics Technology, Budapest, 17-23 September, 1990.

    Google Scholar 

  137. F. Sols, M. Macucci, U. Ravaioli, et al., “On the possibility of transistor action based on quantum interference phenomena,” Appl. Phys. Lett., 54, No. 4, 350–352 (1989).

    Article  ADS  Google Scholar 

  138. J. A. del Alamo and C. C. Eugster, “Quantum field-effect directorial coupler,” Appl. Phys. Lett., 56, No. 1, 78–80 (1990).

    Article  ADS  Google Scholar 

  139. T. Hiramoto, K. Hirakawa, Y. Iye, et al., “Phase coherence length of electron waves in narrow AlGaAs/GaAs quantum wires fabricated by focussed ion beam implantation,” Appl. Phys. Lett., 54, No. 21, 2103–2105 (1989).

    Article  ADS  Google Scholar 

  140. K. Furuya, “Novel high-speed transistor using electron-wave diffraction,” J. Appl. Phys., 62, No. 4, 1492–1494 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Požela, J. (1993). Quantum-Effect Transistors. In: Physics of High-Speed Transistors. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1242-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1242-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1244-2

  • Online ISBN: 978-1-4899-1242-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics