Skip to main content

Part of the book series: Microdevices ((MDPF))

  • 266 Accesses

Abstract

Analog transistors are a variety of vertical field-effect transistors (Fig. 8.1) in which the gate is fabricated in the shape of a grid (lattice). The operating speed of an analog transistor is determined by how quickly electrons travel the short distance from the source (cathode) to the drain (anode) past the thin gate (grid). The analog transistor is the design analog of a vacuum triode in which the evacuated space has been replaced by a semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Watanabe and J. Nishizawa, Japanese Patent 205068: Published No. 28-6077 (Fig. 15): Application Date Dec, 1950.

    Google Scholar 

  2. W. Shockley, “Transistor electronics: Imperfections, unipolar and analog transistors,” Froc. IRE, 40, No. 11, 1289–1313 (1952).

    Article  Google Scholar 

  3. R. Zuleeg, “A silicon space-charge-limited triode and analog transistor,” Solid-State Electron., 10, No. 5, 449–460 (1967).

    Article  ADS  Google Scholar 

  4. S. Teszner and B. R. Gicquel, “Gridistor — a new field-effect device,” Froc. IEEE, 52, No. 12, 1502–1513 (1964).

    Article  Google Scholar 

  5. C. O. Bozler, G. D. Alley, R. A. Murphy, et al., “The permeable base transistor,” Proc. 7th Biennial Cornell Electrical Engineering Conf. (1979), p. 33.

    Google Scholar 

  6. C. A. Mead, “Operation of tunnel-emission devices,” J. Appl. Phys., 32, No. 4, 646–652 (1961).

    Article  ADS  Google Scholar 

  7. J. Nishizawa, T. Terasaki, and J. Shibata, “Field-effect transistor versus analog transistor (static induction transistor),” IEEE Trans. Electron Dev., ED-22, No. 4, 185–197 (1975).

    Article  Google Scholar 

  8. J. Nishizawa, “Recent progress and potential of SIT,” in: Proc. 11th Intern. Conf. on Solid State Devices, Tokyo, 1979, Jpn. J. Appl Phys., 19, Suppl. 19-1, 3–11 (1980).

    Google Scholar 

  9. I. Bencuya, A. Cogan, S. Butler, et al., “Static induction transistors optimized for high-voltage operation and high microwave power output,” IEEE Trans. Electron Dev., ED-32, No. 7, 1321–1327 (1985).

    Article  ADS  Google Scholar 

  10. T. Shino et al., “2 GHz, high power silicon SITs,” Jpn. J. Appl. Phys., 19, No. 3, 283 (1980).

    Google Scholar 

  11. J. Nishizawa and K. Nonaka, “Current amplification in nonhomogeneous-base structure and static induction transistor structure,” J. Appl. Phys., 57, No. 10, 4783–4797 (1985).

    Article  ADS  Google Scholar 

  12. Y. Nakamura, H. Tadano, M. Takigawa, et al., “Experimental study on current gain of BSIT,” IEEE Trans. Electron Dev., ED-33, No. 6, 810–815 (1986).

    Article  Google Scholar 

  13. J. Nishizawa, K. Nonaka, and T. Tamamushi, “A very high sensitivity phototransistor structure,” Int. J. Infrared Millimeter Waves, 6, No. 8, 649–673 (1985).

    Article  ADS  Google Scholar 

  14. J. Nishizawa, T. Tamamushi, and S. Suzuki, “SIT image converter,” in: Japan Annual Reviews in Electronics, Computers and Telecommunications, J. Nishizawa (ed.), Vol. 8: Semiconductor Technologies, Ohmsha, LTD, and North-Holland, Tokyo (1983), pp. 219-242.

    Google Scholar 

  15. J. Nishizawa, K. Nonaka, and T. Tamamushi, “Static induction thyristor,” in: Japan Annual Reviews in Electronics, Computers and Telecommunications, J. Nishizawa (ed.), Vol. 13: Semiconductor Technologies, Ohmsha, LTD, and North-Holland, Tokyo (1984), pp. 89-120.

    Google Scholar 

  16. K. Motoya and J. Nishizawa, “TUNNETT,” Int. J. Infrared Millimeter Waves, 6, No. 7, 483–495 (1985).

    Article  ADS  Google Scholar 

  17. J. Nishizawa, “The GaAs TUNNETT diodes,” Int. J. Infrared Millimeter Waves, 5, No. 4, 215–216 (1982).

    MathSciNet  Google Scholar 

  18. C. O. Bozler and G. D. Alley, “The permeable-base transistor and its application to logic circuits,” Proc. IEEE, 70, No. 1, 46–52 (1982).

    Article  ADS  Google Scholar 

  19. C. O. Bozler and G. D. Alley, “Fabrication and numerical simulation of the permeable-base transistor,” IEEE Trans. ElectronDev., ED-27, No. 6, 1128–1141 (1980).

    Article  ADS  Google Scholar 

  20. N. P. Economou, “Development of the technology base for advanced devices and circuits,” Proc. IEEE, 71, No. 5, 601–611 (1983).

    Article  ADS  Google Scholar 

  21. Y. Takanashi, H. Asai, S. Ando, et al., “Microwave performance of GaAs PBTs fabricated from MO-CVD wafers,” Jpn. J. Appl. Phys., 25, No. 2, 111–113 (1986).

    Article  ADS  Google Scholar 

  22. G. D. Alley, C. O. Bozler, A. R. Calawa, et al., “Millimeter-wave length GaAs permeable-base transistor,” presented at Device Research Conf., Fort Collins, CO, June, 1982.

    Google Scholar 

  23. G. D. Alley, “High-voltage two-dimensional simulations of permeable-base transistors,” IEEE Trans. Electron Dev., ED-30, No. 1, 52–60 (1983).

    Article  ADS  Google Scholar 

  24. M. A. Osman, D. H. Navon, T. W. Tang, et al., “Improved design of the gallium arsenide permeable-base transistor,” IEEE Trans. Electron Dev., ED-30, No. 10, 1348–1354 (1983).

    Article  ADS  Google Scholar 

  25. G. D. Alley, C. O. Bozler, N, P. Economou, et al., “Millimeter-wave-length GaAs permeable-base transistors,” IEEE Trans. Electron Dev., ED-29, No. 10, 1708 (1982).

    Article  Google Scholar 

  26. X. C. Zhu, X. N., Zhang, A. Van der Ziel, et al., “Noise in permeable-base transistors,” Physica, 129B, 573–577 (1985).

    Google Scholar 

  27. A. Gopinath and J. B. Rankin, “Effect of doping profile variations on the performance of the permeable base transistors,” IEEE Trans. Electron Dev., ED-33, No. 6, 816–821 (1986).

    Article  ADS  Google Scholar 

  28. C. Hwang* D. H. Navon, and T. Tang, “Monte Carlo simulation of the GaAs permeable-base transistor,” IEEE Trans. Electron Dev., ED-34, No. 2, 154–159 (1987).

    Google Scholar 

  29. N. A. Bannov, V. I. Ryzhii, and G. Yu. Khrenov, “Numerical modeling of electron processes in submicron permeable-base field-effect transistors,” FTP, 21, No. 3, 500–503 (1987).

    Google Scholar 

  30. V. A. Vojak and G. D. Alley, “A comparison of etched-geometry and overgrown silicon permeable-base transistors by two-dimensional numerical simulations,” IEEE Trans. Electron Dev., ED-30, No. 8, 877–883 (1983).

    Article  ADS  Google Scholar 

  31. K. Ishibashi and S. Furukawa, “SPE-CoSi2 submicrometer lines by lift-off using selective reaction and its application to a permeable-base transistor,” IEEE Trans. Electron Dev., ED-33, No. 3, 322–327 (1986).

    Article  ADS  Google Scholar 

  32. D. D. Rathman, N. P. Economou, D. J. Silversmith, et al., “The microwave silicon permeable base transistor,” IEEE Int. Electron. Dev. Meet. Tech. Dig., Dec, 1983.

    Google Scholar 

  33. W. R. Frensley, B. Bayraktaroglu, S. E. Campbell, et al., “Design and fabrication of a GaAs vertical MESFET,” IEEE Trans. Electron Dev., ED-32, No. 5, 952–956 (1985).

    Article  Google Scholar 

  34. A. Gruhle, L. Vescan, and H. Beneking, “Dual-gate silicon permeable-base transistors built on LPVPE-grown material,” Electron. Lett., 23, No. 9, 447–449 (1987).

    Article  Google Scholar 

  35. G. Glastre, E. Rosencher, F. Arnaud d’Avitaya, et al., “CoSi2 and Si epitaxial growth in 〈111〉 Si submicron lines with application to a permeable-base transistor,” Appl. Phys. Lett., 52, No. 11, 898–900 (1988).

    Article  ADS  Google Scholar 

  36. J. P. Spratt, R. F. Schwarz, and W. M. Kane, “Hot electrons in metal films: injection and collection,” Phys. Rev. Lett., 6, No. 7, 341–342 (1961).

    Article  ADS  Google Scholar 

  37. M. Heiblum, “Tunneling hot electron transfer amplifiers (THETA): amplifiers operating up to infrared,” Solid-State Electron., 24, No. 4, 343–366 (1981).

    Article  ADS  Google Scholar 

  38. E. Rosencher, S. Delage, Y. Campidelli, et al., “Transistor effect in monolithic Si-CoSi2-Si epitaxial structures,” Electron. Lett., 20, No. 19, 762–764 (1984).

    Article  ADS  Google Scholar 

  39. J. C. Hensel, A. F. J. Levi, R. T. Tung, et al., “Transistor action in Si/CoSi2/Si heterostructures,” Appl Phys. Lett., 47, No. 2, 151–153 (1985).

    Article  ADS  Google Scholar 

  40. E. Rosencher, S. Delage, F. Arnaud d’Avitaya, et al., “Realisation and electrical properties of a monolithic metal-base transistor: the Si/CoSi2/Si structure,” Physica, 134B, 106–110 (1985).

    Google Scholar 

  41. R. Abdeshaah and K. L. Wang, “Transport study in Si-silicide-Si transistors using a Monte Carlo technique,” IEEE Tram. Electron Dev., ED-31, No. 12, 1701–1707 (1984).

    Article  ADS  Google Scholar 

  42. S. M. Sze and H. K. Gummel, “Appraisal of semiconductor-metal-semiconductor transistor,” Solid-State Electron., 9, No. 8, 751–769 (1966).

    Article  ADS  Google Scholar 

  43. S. Delage, P. A. Badoz, E. Rosencher, et al., “Electrical characterization of epitaxially overgrown Si in Si〈111〉/CoSi2/Si metal base transistor,” Electron. Lett., 22, No. 4, 207–209 (1986).

    Article  ADS  Google Scholar 

  44. R. T. Tung, A. F. J. Levi, and J. M. Gibson, “Control of a natural permeable CoSi2-base transistor,” Appl. Phys. Lett., 48, No. 10, 635–637 (1986).

    Article  ADS  Google Scholar 

  45. J. C. Hensel, “Operation of the Si/CoSi2/Si heterostructure transistor,” Appl. Phys. Lett., 49, No. 9, 522–524 (1986).

    Article  ADS  Google Scholar 

  46. J. Lindmayer, “The metal-gate transistor,” Proc. IEEE, 52, No. 12, 1751–1752 (1964).

    Article  Google Scholar 

  47. G. F. Derkits, J. P. Harbison, J. Levkoff, et al., “Transistor action in novel GaAs/W/GaAs structures,” Appl. Phys. Lett., 48, No. 18, 1220–1222 (1986).

    Article  ADS  Google Scholar 

  48. T. Kobayashi, H. Sakai, and M. Tonouchi, “Monolithic superconductor-base hot-electron transistors with large current gain,” Electron. Lett., 22, No. 12, 659–661 (1986).

    Article  ADS  Google Scholar 

  49. M. Tonouchi, H. Sakai, and T. Kobayashi, “Superconductor-base hot-electron transistor. I. Theory and design,” Jpn. J. Appl. Phys., 25, No. 5, 705–710 (1986).

    Article  ADS  Google Scholar 

  50. H. Sakai, Y. Kurita, M. Tonouchi, and T. Kobayashi, “Superconductor-base hot-electron transistor. II. Fabrication and electrical measurements,” Jpn. J. Appl. Phys., 25, No. 6, 835–840 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Požela, J. (1993). Analog Transistors. In: Physics of High-Speed Transistors. Microdevices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1242-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1242-8_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1244-2

  • Online ISBN: 978-1-4899-1242-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics